Developmental dysplasia of the hip (DDH) in infants under 6 months of age is typically treated by the Pavlik harness (PH). During successful PH treatment, a subluxed/dislocated hip is spontaneously reduced into the acetabulum, and DDH undergoes self-correction. PH treatment may fail due to avascular necrosis (AVN) of the femoral head. An improved understanding of mechanical factors accounting for the success/failure of PH treatment may arise from investigating articular cartilage contact pressure (CCP) within a hip during treatment. In this study, CCP in a cartilaginous infant hip was investigated through patient-specific finite element (FE) modeling. We simulated CCP of the hip equilibrated at 90 deg flexion at abduction angles of 40 deg, 60 deg, and 80 deg. We found that CCP was predominantly distributed on the anterior and posterior acetabulum, leaving the superior acetabulum (mainly superolateral) unloaded. From a mechanobiological perspective, hypothesizing that excessive pressure inhibits growth, our results qualitatively predicted increased obliquity and deepening of the acetabulum under such CCP distribution. This is the desired and observed therapeutic effect in successful PH treatment. The results also demonstrated increase in CCP as abduction increased. In particular, the simulation predicted large magnitude and concentrated CCP on the posterior wall of the acetabulum and the adjacent lateral femoral head at extreme abduction (80 deg). This CCP on lateral femoral head may reduce blood flow in femoral head vessels and contribute to AVN. Hence, this study provides insight into biomechanical factors potentially responsible for PH treatment success and complications.

References

1.
Moraleda
,
L.
,
Albiñana
,
J.
,
Salcedo
,
M.
, and
Gonzaléz-Morán
,
G.
,
2013
, “
Dysplasia in the Development of the Hip
,”
Rev. Española Cirugía Ortopédica y Traumatol. (English Ed.)
,
57
(
1
), pp.
67
77
.
2.
Bin
,
K.
,
Laville
,
J. M.
, and
Salmeron
,
F.
,
2014
, “
Developmental Dysplasia of the Hip in Neonates: Evolution of Acetabular Dysplasia After Hip Stabilization by Brief Pavlik Harness Treatment
,”
Orthop. Traumatol. Surg. Res.
,
100
(
4
), pp.
357
361
.
3.
Lee
,
M. C.
, and
Eberson
,
C. P.
,
2006
, “
Growth and Development of the Child's Hip
,”
Orthop. Clin. North Am.
,
37
(
2
), pp.
119
132
.
4.
Suzuki
,
S.
,
Kashiwagi
,
N.
,
Kasahara
,
Y.
,
Seto
,
Y.
, and
Futami
,
T.
,
1996
, “
Avascular Necrosis and the Pavlik Harness. The Incidence of Avascular Necrosis in Three Types of Congenital Dislocation of the Hip as Classified by Ultrasound
,”
J. Bone Jt. Surg. Br.
,
78
(
4
), pp.
631
635
.
5.
Vafaeian
,
B.
,
Zonoobi
,
D.
,
Mabee
,
M.
,
Hareendranathan
,
A. R.
,
El-Rich
,
M.
,
Adeeb
,
S.
, and
Jaremko
,
J. L.
,
2017
, “
Finite Element Analysis of Mechanical Behavior of Human Dysplastic Hip Joints: A Systematic Review
,”
Osteoarthr. Cartil.
,
25
(
4
), pp.
438
447
.
6.
Kitoh
,
H.
,
Kawasumi
,
M.
, and
Ishiguro
,
N.
,
2009
, “
Predictive Factors for Unsuccessful Treatment of Developmental Dysplasia of the Hip by the Pavlik Harness
,”
J. Pediatr. Orthop.
,
29
(
6
), pp.
552
557
.
7.
Huayamave
,
V.
,
Rose
,
C.
,
Serra
,
S.
,
Jones
,
B.
,
Divo
,
E.
,
Moslehy
,
F.
,
Kassab
,
A. J.
, and
Price
,
C. T.
,
2015
, “
A Patient-Specific Model of the Biomechanics of Hip Reduction for Neonatal Developmental Dysplasia of the Hip: Investigation of Strategies for Low to Severe Grades of Developmental Dysplasia of the Hip
,”
J. Biomech.
,
48
(
10
), pp.
2026
2033
.
8.
Diederichs
,
C.
,
Heath
,
A.
,
Hareendranathan
,
A. R.
,
Zonoobi
,
D.
,
Kuntze
,
G.
,
Dulai
,
S.
,
Mabee
,
M. G.
,
Ronsky
,
J. L.
, and
Jaremko
,
J. L.
,
2016
, “
Cross-Modality Validation of Acetabular Surface Models Using 3-D Ultrasound Versus Magnetic Resonance Imaging in Normal and Dysplastic Infant Hips
,”
Ultrasound Med. Biol.
,
42
(
9
), pp.
2308
2314
.
9.
Drillis
,
R.
,
Contini
,
R.
, and
Bluestein
,
M.
,
1964
, “
Body Segment Parameters: A Survey of Measurement Techniques
,”
Artif. Limbs
,
25
, pp.
44
66
.
10.
Henak
,
C. R.
,
Carruth
,
E. D.
,
Anderson
,
A. E.
,
Harris
,
M. D.
,
Ellis
,
B. J.
,
Peters
,
C. L.
, and
Weiss
,
J. A.
,
2013
, “
Finite Element Predictions of Cartilage Contact Mechanics in Hips With Retroverted Acetabula
,”
Osteoarthr. Cartil.
,
21
(
10
), pp.
1522
1529
.
11.
Cerveri
,
P.
,
Marchente
,
M.
,
Bartels
,
W.
,
Corten
,
K.
,
Simon
,
J. P.
, and
Manzotti
,
A.
,
2010
, “
Automated Method for Computing the Morphological and Clinical Parameters of the Proximal Femur Using Heuristic Modeling Techniques
,”
Ann. Biomed. Eng.
,
38
(
5
), pp.
1752
1766
.
12.
Cunningham
,
C. A.
, and
Black
,
S. M.
,
2009
, “
Iliac Cortical Thickness in the Neonate—The Gradient Effect
,”
J. Anat.
,
215
(
3
), pp.
364
370
.
13.
Odita
,
J.
,
Okolo
,
A.
, and
Omene
,
J.
,
1986
, “
Bone Cortical Mass in Newborn Infants: A Comparison Between Standards in the Femur and Humerus
,”
Skeletal Radiol.
,
15
(
8
), pp.
648
651
.
14.
Dostal
,
W. F.
, and
Andrews
,
J. G.
,
1981
, “
A Three-Dimensional Biomechanical Model of Hip Musculature
,”
J. Biomech.
,
14
(
11
), pp.
803
807
.
15.
Fuss
,
F. K.
, and
Bacher
,
A.
,
1991
, “
New Aspects of the Morphology and Function of the Human Hip Joint Ligaments
,”
Am. J. Anat.
,
192
(
1
), pp.
1
13
.
16.
Kim
,
J. E.
,
Li
,
Z.
,
Ito
,
Y.
,
Huber
,
C. D.
,
Shih
,
A. M.
,
Eberhardt
,
A. W.
,
Yang
,
K. H.
,
King
,
A. I.
, and
Soni
,
B. K.
,
2009
, “
Finite Element Model Development of a Child Pelvis With Optimization-Based Material Identification
,”
J. Biomech.
,
42
(
13
), pp.
2191
2195
.
17.
Carter
,
D. R.
, and
Wong
,
M.
,
1988
, “
The Role of Mechanical Loading Histories in the Development of Diarthrodial Joints
,”
J. Orthop. Res.
,
6
(
6
), pp.
804
816
.
18.
Hewitt
,
J.
,
Guilak
,
F.
,
Glisson
,
R.
, and
Vail
,
T. P.
,
2001
, “
Regional Material Properties of the Human Hip Joint Capsule Ligaments
,”
J. Orthop. Res.
,
19
(
3
), pp.
359
364
.
19.
Ardila
,
O. J.
,
Divo
,
E. A.
,
Moslehy
,
F. A.
,
Rab
,
G. T.
,
Kassab
,
A. J.
, and
Price
,
C. T.
,
2013
, “
Mechanics of Hip Dysplasia Reductions in Infants Using the Pavlik Harness: A Physics-Based Computational Model
,”
J. Biomech.
,
46
(
9
), pp.
1501
1507
.
20.
Seringe
,
R.
,
Bonnet
,
J.-C.
, and
Katti
,
E.
,
2014
, “
Pathogeny and Natural History of Congenital Dislocation of the Hip
,”
Orthop. Traumatol. Surg. Res.
,
100
(
1
), pp.
59
67
.
21.
Giorgi
,
M.
,
Carriero
,
A.
,
Shefelbine
,
S. J.
, and
Nowlan
,
N. C.
,
2014
, “
Mechanobiological Simulations of Prenatal Joint Morphogenesis
,”
J. Biomech.
,
47
(
5
), pp.
989
995
.
22.
Giorgi
,
M.
,
Carriero
,
A.
,
Shefelbine
,
S. J.
, and
Nowlan
,
N. C.
,
2015
, “
Effects of Normal and Abnormal Loading Conditions on Morphogenesis of the Prenatal Hip Joint: Application to Hip Dysplasia
,”
J. Biomech.
,
48
(
12
), pp.
3390
3397
.
23.
Tucker
,
F. R.
,
1949
, “
Arterial Supply at the Femoral Head and Its Clinical Importance
,”
J. Bone Jt. Surg. Br.
,
31B
(
1
), pp.
82
93
.
24.
Borowski
,
A.
,
Thawrani
,
D.
,
Grissom
,
L.
,
Littleton
,
A. G.
, and
Thacker
,
M. M.
,
2009
, “
Bilaterally Dislocated Hips Treated With the Pavlik Harness are Not at a Higher Risk for Failure
,”
J. Pediatr. Orthop.
,
29
(
7
), pp.
661
665
.
25.
Ramsey
,
P. L.
,
Lasser
,
S.
, and
MacEwen
,
G. D.
,
1976
, “
Congenital Dislocation of the Hip. Use of the Pavlik Harness in the Child During the First Six Months of Life
,”
J. Bone Jt. Surg. Am.
,
58
(
7
), pp.
1000
1004
.
26.
Atalar
,
H.
,
Sayli
,
U.
,
Yavuz
,
O. Y.
,
Uraş
,
I.
, and
Dogruel
,
H.
,
2007
, “
Indicators of Successful Use of the Pavlik Harness in Infants With Developmental Dysplasia of the Hip
,”
Int. Orthop.
,
31
(
2
), pp.
145
150
.
27.
Suzuki
,
S.
,
1994
, “
Reduction of CDH by the Pavlik Harness. Spontaneous Reduction Observed by Ultrasound
,”
J. Bone Jt. Surg. Br.
,
76
(
3
), pp.
460
462
.
28.
Kazemi
,
M.
, and
Li
,
L. P.
,
2014
, “
A Viscoelastic Poromechanical Model of the Knee Joint in Large Compression
,”
Med. Eng. Phys.
,
36
(
8
), pp.
998
1006
.
You do not currently have access to this content.