Atomic force microscopy (AFM) has been used to measure cellular stiffness at different osmolarities to investigate the effect of osmotic pressure on cells. However, substantial direct evidence is essential to clarify the phenomena derived from the experimental results. This study used both the single-point and force mapping methods to measure the effective Young's modulus of the cell by using temporal and spatial information. The single-point force measurements confirmed the positive correlation between cellular stiffness and osmolarity. The force mapping measurements provided local stiffness on the cellular surface and identified the cytoskeleton distribution underneath the plasma membrane. At hyper-osmolarity, the cytoskeleton was observed to cover most of the area underneath the plasma membrane, and the effective Young's modulus on the area with cytoskeleton support was determined to be higher than that at iso-osmolarity. The overall increase in cellular Young's modulus confirmed the occurrence of cytoskeleton compression at hyper-osmolarity. On the other hand, although the average Young's modulus at hypo-osmolarity was lower than that at iso-osmolarity, we observed that the local Young's modulus measured on the areas with cytoskeleton support remained similar from iso-osmolarity to hypo-osmolarity. The reduction of the average Young's modulus at hypo-osmolarity was attributed to reduced cytoskeleton coverage underneath the plasma membrane.

References

1.
Hampton
,
R. Y.
, and
Holz
,
R. W.
,
1983
, “
Effects of Changes in Osmolality on the Stability and Function of Cultured Chromaffin Cells and the Possible Role of Osmotic Forces in Exocytosis
,”
J. Cell. Biol.
,
96
(
4
), pp.
1082
1088
.
2.
Stewart
,
M. P.
,
Helenius
,
J.
,
Toyoda
,
Y.
,
Ramanathan
,
S. P.
,
Muller
,
D. J.
, and
Hyman
,
A. A.
,
2011
, “
Hydrostatic Pressure and the Actomyosin Cortex Drive Mitotic Cell Rounding
,”
Nature
,
469
(
7329
), pp.
226
230
.
3.
Wen
,
P. J.
,
Grenklo
,
S.
,
Arpino
,
G.
,
Tan
,
X.
,
Liao
,
H. S.
,
Heureaux
,
J.
,
Peng
,
S. Y.
,
Chiang
,
H. C.
,
Hamid
,
E.
,
Zhao
,
W. D.
,
Shin
,
W.
,
Nareoja
,
T.
,
Evergren
,
E.
,
Jin
,
Y.
,
Karlsson
,
R.
,
Ebert
,
S. N.
,
Jin
,
A.
,
Liu
,
A. P.
,
Shupliakov
,
O.
, and
Wu
,
L. G.
,
2016
, “
Actin Dynamics Provides Membrane Tension to Merge Fusing Vesicles Into the Plasma Membrane
,”
Nat. Commun.
,
7
, p.
12604
.
4.
Stephens
,
T.
,
Wu
,
Z.
, and
Liu
,
J.
,
2017
, “
Mechanics of Post-Fusion Exocytotic Vesicle
,”
Phys. Biol.
,
14
(
3
), p.
035004
.
5.
Dai
,
J.
, and
Sheetz
,
M. P.
,
1995
, “
Mechanical Properties of Neuronal Growth Cone Membranes Studied by Tether Formation With Laser Optical Tweezers
,”
Biophys. J.
,
68
(
3
), pp.
988
996
.
6.
Hochmuth
,
R. M.
,
2000
, “
Micropipette Aspiration of Living Cells
,”
J. Biomech.
,
33
(
1
), pp.
15
22
.
7.
Sokolov
,
I.
,
Dokukin
,
M. E.
, and
Guz
,
N. V.
,
2013
, “
Method for Quantitative Measurements of the Elastic Modulus of Biological Cells in AFM Indentation Experiments
,”
Methods
,
60
(
2
), pp.
202
213
.
8.
Dufrene
,
Y. F.
,
Martinez-Martin
,
D.
,
Medalsy
,
I.
,
Alsteens
,
D.
, and
Muller
,
D. J.
,
2013
, “
Multiparametric Imaging of Biological Systems by Force-Distance Curve-Based AFM
,”
Nat. Methods
,
10
(
9
), pp.
847
854
.
9.
Touhami
,
A.
,
Nysten
,
B.
, and
Dufrene
,
Y. F.
,
2003
, “
Nanoscale Mapping of the Elasticity of Microbial Cells by Atomic Force Microscopy
,”
Langmuir
,
19
(
11
), pp.
4539
4543
.
10.
Guz
,
N.
,
Dokukin
,
M.
,
Kalaparthi
,
V.
, and
Sokolov
,
I.
,
2014
, “
If Cell Mechanics Can Be Described by Elastic Modulus: Study of Different Models and Probes Used in Indentation Experiments
,”
Biophys. J.
,
107
(
3
), pp.
564
575
.
11.
Lim
,
C. T.
,
Zhou
,
E. H.
, and
Quek
,
S. T.
,
2006
, “
Mechanical Models for Living Cells—A Review
,”
J. Biomech.
,
39
(
2
), pp.
195
216
.
12.
Steltenkamp
,
S.
,
Rommel
,
C.
,
Wegener
,
J.
, and
Janshoff
,
A.
,
2006
, “
Membrane Stiffness of Animal Cells Challenged by Osmotic Stress
,”
Small
,
2
(
8–9
), pp.
1016
1020
.
13.
Pietuch
,
A.
,
Bruckner
,
B. R.
, and
Janshoff
,
A.
,
2013
, “
Membrane Tension Homeostasis of Epithelial Cells Through Surface Area Regulation in Response to Osmotic Stress
,”
Biochim. Biophys. Acta
,
1833
(
3
), pp.
712
722
.
14.
Spagnoli
,
C.
,
Beyder
,
A.
,
Besch
,
S.
, and
Sachs
,
F.
,
2008
, “
Atomic Force Microscopy Analysis of Cell Volume Regulation
,”
Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
,
78
(
3
), p.
031916
.
15.
Zhou
,
E. H.
,
Trepat
,
X.
,
Park
,
C. Y.
,
Lenormand
,
G.
,
Oliver
,
M. N.
,
Mijailovich
,
S. M.
,
Hardin
,
C.
,
Weitz
,
D. A.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
,
2009
, “
Universal Behavior of the Osmotically Compressed Cell and Its Analogy to the Colloidal Glass Transition
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
26
), pp.
10632
10637
.
16.
Nguyen
,
T. D.
,
Oloyede
,
A.
,
Singh
,
S.
, and
Gu
,
Y.
,
2016
, “
Investigation of the Effects of Extracellular Osmotic Pressure on Morphology and Mechanical Properties of Individual Chondrocyte
,”
Cell Biochem. Biophys.
,
74
(
2
), pp.
229
240
.
17.
Berdyyeva
,
T. K.
,
Woodworth
,
C. D.
, and
Sokolov
,
I.
,
2005
, “
Human Epithelial Cells Increase Their Rigidity With Ageing In Vitro: Direct Measurements
,”
Phys. Med. Biol.
,
50
(
1
), pp.
81
92
.
18.
Puricelli
,
L.
,
Galluzzi
,
M.
,
Schulte
,
C.
,
Podesta
,
A.
, and
Milani
,
P.
,
2015
, “
Nanomechanical and Topographical Imaging of Living Cells by Atomic Force Microscopy With Colloidal Probes
,”
Rev. Sci. Instrum.
,
86
(
3
), p.
033705
.
19.
Levy
,
R.
, and
Maaloum
,
M.
,
2002
, “
Measuring the Spring Constant of Atomic Force Microscope Cantilevers: Thermal Fluctuations and Other Methods
,”
Nanotechnol.
,
13
(1), pp.
33
37
.
20.
Sader
,
J. E.
,
Lu
,
J.
, and
Mulvaney
,
P.
,
2014
, “
Effect of Cantilever Geometry on the Optical Lever Sensitivities and Thermal Noise Method of the Atomic Force Microscope
,”
Rev. Sci. Instrum.
,
85
(
11
), p.
113702
.
21.
Alsteens
,
D.
,
Dupres
,
V.
,
Yunus
,
S.
,
Latge
,
J. P.
,
Heinisch
,
J. J.
, and
Dufrene
,
Y. F.
,
2012
, “
High-Resolution Imaging of Chemical and Biological Sites on Living Cells Using Peak Force Tapping Atomic Force Microscopy
,”
Langmuir
,
28
(
49
), pp.
16738
16744
.
22.
Braunsmann
,
C.
,
Seifert
,
J.
,
Rheinlaender
,
J.
, and
Schaffer
,
T. E.
,
2014
, “
High-Speed Force Mapping on Living Cells With a Small Cantilever Atomic Force Microscope
,”
Rev. Sci. Instrum.
,
85
(
7
), p.
073703
.
You do not currently have access to this content.