Multibody kinematics optimization (MKO) aims to reduce soft tissue artefact (STA) and is a key step in musculoskeletal modeling. The objective of this review was to identify the numerical methods, their validation and performance for the estimation of the human joint kinematics using MKO. Seventy-four papers were extracted from a systematized search in five databases and cross-referencing. Model-derived kinematics were obtained using either constrained optimization or Kalman filtering to minimize the difference between measured (i.e., by skin markers, electromagnetic or inertial sensors) and model-derived positions and/or orientations. While hinge, universal, and spherical joints prevail, advanced models (e.g., parallel and four-bar mechanisms, elastic joint) have been introduced, mainly for the knee and shoulder joints. Models and methods were evaluated using: (i) simulated data based, however, on oversimplified STA and joint models; (ii) reconstruction residual errors, ranging from 4 mm to 40 mm; (iii) sensitivity analyses which highlighted the effect (up to 36 deg and 12 mm) of model geometrical parameters, joint models, and computational methods; (iv) comparison with other approaches (i.e., single body kinematics optimization and nonoptimized kinematics); (v) repeatability studies that showed low intra- and inter-observer variability; and (vi) validation against ground-truth bone kinematics (with errors between 1 deg and 22 deg for tibiofemoral rotations and between 3 deg and 10 deg for glenohumeral rotations). Moreover, MKO was applied to various movements (e.g., walking, running, arm elevation). Additional validations, especially for the upper limb, should be undertaken and we recommend a more systematic approach for the evaluation of MKO. In addition, further model development, scaling, and personalization methods are required to better estimate the secondary degrees-of-freedom (DoF).

References

1.
Schmitz
,
A.
,
Ye
,
M.
,
Shapiro
,
R.
,
Yang
,
R. G.
, and
Noehren
,
B.
,
2014
, “
Accuracy and Repeatability of Joint Angles Measured Using a Single Camera Markerless Motion Capture System
,”
J. Biomech.
,
47
(
2
), pp.
587
591
.
2.
Duprey
,
S.
,
Naaim
,
A.
,
Moissenet
,
F.
,
Begon
,
M.
, and
Cheze
,
L.
,
2017
, “
Kinematic Models of the Upper Limb Joints for Multibody Kinematics Optimisation: An Overview
,”
J. Biomech.
,
62
, pp.
87
94
.
3.
Leardini
,
A.
,
Belvedere
,
C.
,
Nardini
,
F.
,
Sancisi
,
N.
,
Conconi
,
M.
, and
Parenti-Castelli
,
V.
,
2017
, “
Kinematic Models of Lower Limb Joints for Musculo-Skeletal Modelling and Optimization in Gait Analysis
,”
J. Biomech.
,
62
, pp.
77
86
.
4.
Soderkvist
,
I.
, and
Wedin
,
P. A.
,
1993
, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
,
26
(
12
), pp.
1473
1477
.
5.
Cheze
,
L.
,
Fregly
,
B. J.
, and
Dimnet
,
J.
,
1995
, “
A Solidification Procedure to Facilitate Kinematic Analyses Based on Video System Data
,”
J. Biomech.
,
28
(
7
), pp.
879
884
.
6.
Andriacchi
,
T. P.
,
Alexander
,
E. J.
,
Toney
,
M. K.
,
Dyrby
,
C.
, and
Sum
,
J.
,
1998
, “
A Point Cluster Method for In Vivo Motion Analysis: Applied to a Study of Knee Kinematics
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
743
749
.
7.
Taylor
,
W. R.
,
Ehrig
,
R. M.
,
Duda
,
G. N.
,
Schell
,
H.
,
Seebeck
,
P.
, and
Heller
,
M. O.
,
2005
, “
On the Influence of Soft Tissue Coverage in the Determination of Bone Kinematics Using Skin Markers
,”
J. Orthop. Res.
,
23
(
4
), pp.
726
734
.
8.
Kainz
,
H.
,
Carty
,
C. P.
,
Modenese
,
L.
,
Boyd
,
R. N.
, and
Lloyd
,
D. G.
,
2015
, “
Estimation of the Hip Joint centre in Human Motion Analysis: A Systematic Review
,”
Clin. Biomech.
,
30
(
4
), pp.
319
329
.
9.
Lempereur
,
M.
,
Brochard
,
S.
,
Leboeuf
,
F.
, and
Rémy-Néris
,
O.
,
2014
, “
Validity and Reliability of 3D Marker Based Scapular Motion Analysis: A Systematic Review
,”
J. Biomech.
,
47
(
10
), pp.
2219
2230
.
10.
Peters
,
A.
,
Galna
,
B.
,
Sangeux
,
M.
,
Morris
,
M.
, and
Baker
,
R.
,
2010
, “
Quantification of Soft Tissue Artifact in Lower Limb Human Motion Analysis: A Systematic Review
,”
Gait Posture
,
31
(
1
), pp.
1
8
.
11.
Bolsterlee
,
B.
,
Veeger
,
H. E. J.
, and
van der Helm
,
F. C. T.
,
2014
, “
Modelling Clavicular and Scapular Kinematics: From Measurement to Simulation
,”
Med. Biol. Eng. Comput.
,
52
(
3
), pp.
283
291
.
12.
Laitenberger
,
M.
,
Raison
,
M.
,
Périé
,
D.
, and
Begon
,
M.
,
2015
, “
Refinement of the Upper Limb Joint Kinematics and Dynamics Using a Subject-Specific Closed-Loop Forearm Model
,”
Multibody Syst. Dyn.
,
33
(
4
), pp.
413
438
.
13.
Ayusawa
,
K.
,
Ikegami
,
Y.
, and
Nakamura
,
Y.
,
2014
, “
Simultaneous Global Inverse Kinematics and Geometric Parameter Identification of Human Skeletal Model From Motion Capture Data
,”
Mech. Mach. Theory
,
74
, pp.
274
284
.
14.
Begon
,
M.
,
Wieber
,
P.-B.
, and
Yeadon
,
M. R.
,
2008
, “
Kinematics Estimation of Straddled Movements on High bar From a Limited Number of Skin Markers Using a Chain Model
,”
J. Biomech.
,
41
(
3
), pp.
581
586
.
15.
Charlton
,
I. W.
,
Tate
,
P.
,
Smyth
,
P.
, and
Roren
,
L.
,
2004
, “
Repeatability of an Optimised Lower Body Model
,”
Gait Posture
,
20
(
2
), pp.
213
221
.
16.
Fohanno
,
V.
,
Lacouture
,
P.
, and
Colloud
,
F.
,
2013
, “
Improvement of Upper Extremity Kinematics Estimation Using a Subject-Specific Forearm Model Implemented in a Kinematic Chain
,”
J. Biomech.
,
46
(
6
), pp.
1053
1059
.
17.
Jackson
,
M.
,
Michaud
,
B.
,
Tétreault
,
P.
, and
Begon
,
M.
,
2012
, “
Improvements in Measuring Shoulder Joint Kinematics
,”
J. Biomech.
,
45
(
12
), pp.
2180
2183
.
18.
Pontonnier
,
C.
, and
Dumont
,
G.
,
2009
, “
Inverse Dynamics Method Using Optimization Techniques for the Estimation of Muscles Forces Involved in the Elbow Motion
,”
Int. J. Interact. Des. Manuf. (IJIDeM)
,
3
(
4
), pp.
227
236
.
19.
Prinold
,
J. A. I.
, and
Bull
,
A. M. J.
,
2014
, “
Scaling and Kinematics Optimisation of the Scapula and Thorax in Upper Limb Musculoskeletal Models
,”
J. Biomech.
,
47
(
11
), pp.
2813
2819
.
20.
Prokopenko
,
R. A.
,
Frolov
,
A. A.
,
Biryukova
,
E. V.
, and
Roby-Brami
,
A.
,
2001
, “
Assessment of the Accuracy of a Human Arm Model With Seven Degrees of Freedom
,”
J. Biomech.
,
34
(
2
), pp.
177
185
.
21.
Reinbolt
,
J. A.
,
Schutte
,
J. F.
,
Fregly
,
B. J.
,
Koh
,
B. I.
,
Haftka
,
R. T.
,
George
,
A. D.
, and
Mitchell
,
K. H.
,
2005
, “
Determination of Patient-Specific Multi-Joint Kinematic Models Through Two-Level Optimization
,”
J. Biomech.
,
38
(
3
), pp.
621
626
.
22.
Robinson
,
M. A.
,
Donnelly
,
C. J.
,
Tsao
,
J.
, and
Vanrenterghem
,
J.
,
2014
, “
Impact of Knee Modeling Approach on Indicators and Classification of Anterior Cruciate Ligament Injury Risk
,”
Med. Sci. Sports Exercise
,
46
(
7
), pp.
1269
1276
.
23.
Thouzé
,
A.
,
Monnet
,
T.
,
Bélaise
,
C.
,
Lacouture
,
P.
, and
Begon
,
M.
,
2016
, “
A Chain Kinematic Model to Assess the Movement of Lower-Limb Including Wobbling Masses
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
7
), pp.
707
716
.
24.
van den Bogert
,
A. J.
,
Geijtenbeek
,
T.
,
Even-Zohar
,
O.
,
Steenbrink
,
F.
, and
Hardin
,
E. C.
,
2013
, “
A Real-Time System for Biomechanical Analysis of Human Movement and Muscle Function
,”
Med. Biol. Eng. Comput.
,
51
(
10
), pp.
1069
1077
.
25.
Tsai
,
M.-J.
, and
Lung
,
H.-Y.
,
2014
, “
Two-Phase Optimized Inverse Kinematics for Motion Replication of Real Human Models
,”
J. Chin. Inst. Eng.
,
37
(
7
), pp.
899
914
.
26.
Begon
,
M.
,
Bélaise
,
C.
,
Naaim
,
A.
,
Lundberg
,
A.
, and
Chèze
,
L.
,
2017
, “
Multibody Kinematic Optimization With Marker Projection Improves the Accuracy of the Humerus Rotational Kinematics
,”
J. Biomech.
,
62
, pp.
117
123
.
27.
Lamberto
,
G.
,
Martelli
,
S.
,
Cappozzo
,
A.
, and
Mazzà
,
C.
,
2017
, “
To What Extent Is Joint and Muscle Mechanics Predicted by Musculoskeletal Models Sensitive to Soft Tissue Artefacts?
,”
J. Biomech.
,
62
, pp. 68–76.
28.
Mantovani
,
G.
, and
Lamontagne
,
M.
,
2017
, “
How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework
,”
ASME J. Biomech. Eng.
,
139
(
4
), p. 044503.
29.
Pizzolato
,
C.
,
Reggiani
,
M.
,
Modenese
,
L.
, and
Lloyd
,
D. G.
,
2017
, “
Real-Time Inverse Kinematics and Inverse Dynamics for Lower Limb Applications Using OpenSim
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
4
), pp.
436
445
.
30.
Lathrop
,
R. L.
,
Chaudhari
,
A. M. W.
, and
Siston
,
R. A.
,
2011
, “
Comparative Assessment of Bone Pose Estimation Using Point Cluster Technique and OpenSim
,”
ASME J. Biomech. Eng.
,
133
(
11
), p.
114503
.
31.
Andersen
,
M. S.
,
Damsgaard
,
M.
, and
Rasmussen
,
J.
,
2009
, “
Kinematic Analysis of Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
371
384
.
32.
Fohanno
,
V.
,
Begon
,
M.
,
Lacouture
,
P.
, and
Colloud
,
F.
,
2014
, “
Estimating Joint Kinematics of a Whole Body Chain Model With Closed-Loop Constraints
,”
Multibody Syst. Dyn.
,
31
(
4
), pp.
433
449
.
33.
Cerveri
,
P.
,
Rabuffetti
,
M.
,
Pedotti
,
A.
, and
Ferrigno
,
G.
,
2003
, “
Real-Time Human Motion Estimation Using Biomechanical Models and Non-Linear State-Space Filters
,”
Medical Biol. Eng. Comput.
,
41
(
2
), pp.
109
123
.
34.
Cerveri
,
P.
,
Pedotti
,
A.
, and
Ferrigno
,
G.
,
2005
, “
Kinematical Models to Reduce the Effect of Skin Artifacts on Marker-Based Human Motion Estimation
,”
J. Biomech.
,
38
(
11
), pp.
2228
2236
.
35.
Cerveri
,
P.
,
Pedotti
,
A.
, and
Ferrigno
,
G.
,
2003
, “
Robust Recovery of Human Motion From Video Using Kalman Filters and Virtual Humans
,”
Hum. Mov. Sci.
,
22
(
3
), pp.
377
404
.
36.
El-Gohary
,
M.
, and
McNames
,
J.
,
2012
, “
Shoulder and Elbow Joint Angle Tracking With Inertial Sensors
,”
IEEE Trans. Biomed. Eng.
,
59
(
9
), pp.
2635
2641
.
37.
Miezal
,
M.
,
Taetz
,
B.
, and
Bleser
,
G.
,
2016
, “
On Inertial Body Tracking in the Presence of Model Calibration Errors
,”
Sensors
,
16
(
7
), p. 1132.
38.
Zhang
,
Z. Q.
,
Wong
,
W. C.
, and
Wu
,
J. K.
,
2011
, “
Ubiquitous Human Upper-Limb Motion Estimation Using Wearable Sensors
,”
IEEE Trans. Inf. Technol. Biomed.
,
15
(
4
), pp.
513
521
.
39.
Seth
,
A.
,
Matias
,
R.
,
Veloso
,
A. P.
, and
Delp
,
S. L.
,
2016
, “
A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics During Shoulder Movements
,”
PLoS One
,
11
(
1
), p.
e0141028
.
40.
De Groote
,
F.
,
De Laet
,
T.
,
Jonkers
,
I.
, and
De Schutter
,
J.
,
2008
, “
Kalman Smoothing Improves the Estimation of Joint Kinematics and Kinetics in Marker-Based Human Gait Analysis
,”
J. Biomech.
,
41
(
16
), pp.
3390
3398
.
41.
Aguiar
,
L.
,
Andrade
,
C.
,
Branco
,
M.
,
Santos-Rocha
,
R.
,
Vieira
,
F.
, and
Veloso
,
A.
,
2016
, “
Global Optimization Method Applied to the Kinematics of Gait in Pregnant Women
,”
J. Mech. Med. Biol.
,
16
(
6
), p.
1650084
.
42.
Aguiar
,
L.
,
Santos-Rocha
,
R.
,
Branco
,
M.
,
Vieira
,
F.
, and
Veloso
,
A.
,
2014
, “
Biomechanical Model for Kinetic and Kinematic Description of Gait During Second Trimester of Pregnancy to Study the Effects of Biomechanical Load on the Musculoskeletal System
,”
J. Mech. Med. Biol.
,
14
(
1
), p.
1450004
.
43.
Charbonnier
,
C.
,
Chagué
,
S.
,
Kolo
,
F. C.
,
Chow
,
J. C. K.
, and
Lädermann
,
A.
,
2014
, “
A Patient-Specific Measurement Technique to Model Shoulder Joint Kinematics
,”
Orthop. Traumatol.: Surg. Res.
,
100
(
7
), pp.
715
719
.
44.
Klous
,
M.
, and
Klous
,
S.
,
2010
, “
Marker-Based Reconstruction of the Kinematics of a Chain of Segments: A New Method That Incorporates Joint Kinematic Constraints
,”
ASME J. Biomech. Eng.
,
132
(
7
), p.
074501
.
45.
Lu
,
T. W.
, and
O'Connor
,
J. J.
,
1999
, “
Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
,
32
(
2
), pp.
129
134
.
46.
Moniz-Pereira
,
V.
,
Cabral
,
S.
,
Carnide
,
F.
, and
Veloso
,
A. P.
,
2014
, “
Sensitivity of Joint Kinematics and Kinetics to Different Pose Estimation Algorithms and Joint Constraints in the Elderly
,”
J. Appl. Biomech.
,
30
(
3
), pp.
446
460
.
47.
Ojeda
,
J.
,
Martínez-Reina
,
J.
, and
Mayo
,
J.
,
2014
, “
A Method to Evaluate Human Skeletal Models Using Marker Residuals and Global Optimization
,”
Mech. Mach. Theory
,
73
, pp.
259
272
.
48.
Roux
,
E.
,
Bouilland
,
S.
,
Godillon-Maquinghen
,
A. P.
, and
Bouttens
,
D.
,
2002
, “
Evaluation of the Global Optimisation Method Within the Upper Limb Kinematics Analysis
,”
J. Biomech.
,
35
(
9
), pp.
1279
1283
.
49.
Stagni
,
R.
,
Fantozzi
,
S.
, and
Cappello
,
A.
,
2009
, “
Double Calibration Vs. global Optimisation: Performance and Effectiveness for Clinical Application
,”
Gait Posture
,
29
(
1
), pp.
119
122
.
50.
Ausejo
,
S.
,
Suescun
,
Á.
, and
Celigüeta
,
J.
,
2011
, “
An Optimization Method for Overdetermined Kinematic Problems Formulated With Natural Coordinates
,”
Multibody Syst. Dyn.
,
26
(
4
), pp.
397
410
.
51.
Clément
,
J.
,
Dumas
,
R.
,
Hagemeister
,
N.
, and
de Guise
,
J. A.
,
2015
, “
Soft Tissue Artifact Compensation in Knee Kinematics by Multi-Body Optimization: Performance of Subject-Specific Knee Joint Models
,”
J. Biomech.
,
48
(
14
), pp.
3796
3802
.
52.
Duprey
,
S.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2010
, “
Influence of Joint Constraints on Lower Limb Kinematics Estimation From Skin Markers Using Global Optimization
,”
J. Biomech.
,
43
(
14
), pp.
2858
2862
.
53.
El Habachi
,
A.
,
Duprey
,
S.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2015
, “
A Parallel Mechanism of the Shoulder—Application to Multi-Body Optimisation
,”
Multibody Syst. Dyn.
,
33
(
4
), pp.
439
451
.
54.
Gasparutto
,
X.
,
Sancisi
,
N.
,
Jacquelin
,
E.
,
Parenti-Castelli
,
V.
, and
Dumas
,
R.
,
2015
, “
Validation of a Multi-Body Optimization With Knee Kinematic Models Including Ligament Constraints
,”
J. Biomech.
,
48
(
6
), pp.
1141
1146
.
55.
Clément
,
J.
,
Dumas
,
R.
,
Hagemeister
,
N.
, and
de Guise
,
J. A.
,
2017
, “
Can Generic Knee Joint Models Improve the Measurement of Osteoarthritic Knee Kinematics During Squatting Activity?
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
1
), pp.
94
103
.
56.
Sancisi
,
N.
,
Gasparutto
,
X.
,
Parenti-Castelli
,
V.
, and
Dumas
,
R.
,
2017
, “
A Multi-Body Optimization Framework With a Knee Kinematic Model Including Articular Contacts and Ligaments
,”
Meccanica
,
52
(
3
), pp.
695
711
.
57.
Richard
,
V.
,
Lamberto
,
G.
,
Lu
,
T.-W.
,
Cappozzo
,
A.
, and
Dumas
,
R.
,
2016
, “
Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study
,”
PLoS One
,
11
(
6
), p.
e0157010
.
58.
Groen
,
B. E.
,
Geurts
,
M.
,
Nienhuis
,
B.
, and
Duysens
,
J.
,
2012
, “
Sensitivity of the OLGA and VCM Models to Erroneous Marker Placement: Effects on 3D-Gait Kinematics
,”
Gait Posture
,
35
(
3
), pp.
517
521
.
59.
Lee
,
J.
,
Flashner
,
H.
, and
McNitt-Gray
,
J. L.
,
2010
, “
Estimation of Multibody Kinematics Using Position Measurements
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
3
), p.
031001
.
60.
Koning
,
B. H. W.
,
van der Krogt
,
M. M.
,
Baten
,
C. T. M.
, and
Koopman
,
B. F. J. M.
,
2015
, “
Driving a Musculoskeletal Model With Inertial and Magnetic Measurement Units
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
9
), pp.
1003
1013
.
61.
Lund
,
M. E.
,
Andersen
,
M. S.
,
de Zee
,
M.
, and
Rasmussen
,
J.
,
2015
, “
Scaling of Musculoskeletal Models From Static and Dynamic Trials
,”
Int. Biomech.
,
2
(
1
), pp.
1
11
.
62.
Ojeda
,
J.
,
Martínez-Reina
,
J.
, and
Mayo
,
J.
,
2016
, “
The Effect of Kinematic Constraints in the Inverse Dynamics Problem in Biomechanics
,”
Multibody Syst. Dyn.
,
37
(
3
), pp.
291
309
.
63.
Andersen
,
M. S.
,
Damsgaard
,
M.
,
MacWilliams
,
B.
, and
Rasmussen
,
J.
,
2010
, “
A Computationally Efficient Optimisation-Based Method for Parameter Identification of Kinematically Determinate and Over-Determinate Biomechanical Systems
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
2
), pp.
171
183
.
64.
Debril
,
J.-F.
,
Pudlo
,
P.
,
Simoneau
,
E.
,
Gorce
,
P.
, and
Lepoutre
,
F. X.
,
2011
, “
A Method for Calculating the Joint Coordinates of Paraplegic Subjects During the Transfer Movement Despite the Loss of Reflective Markers
,”
Int. J. Ind. Ergonom.
,
41
(
2
), pp.
153
166
.
65.
Sholukha
,
V.
,
Bonnechere
,
B.
,
Salvia
,
P.
,
Moiseev
,
F.
,
Rooze
,
M.
, and
Van Sint Jan
,
S.
,
2013
, “
Model-Based Approach for Human Kinematics Reconstruction From Markerless and Marker-Based Motion Analysis Systems
,”
J. Biomech.
,
46
(
14
), pp.
2363
2371
.
66.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H. F. J. M.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020904
.
67.
Martelli
,
S.
,
Kersh
,
M. E.
, and
Pandy
,
M. G.
,
2015
, “
Sensitivity of Femoral Strain Calculations to Anatomical Scaling Errors in Musculoskeletal Models of Movement
,”
J. Biomech.
,
48
(
13
), pp.
3615
3624
.
68.
Martelli
,
S.
,
Valente
,
G.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2015
, “
Sensitivity of a Subject-Specific Musculoskeletal Model to the Uncertainties on the Joint Axes Location
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
14
), pp.
1555
1563
.
69.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
,
2007
, “
Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?
,”
IEEE Trans. Biomed. Eng.
,
54
(
5
), pp.
782
793
.
70.
Valente
,
G.
,
Pitto
,
L.
,
Stagni
,
R.
, and
Taddei
,
F.
,
2015
, “
Effect of Lower-Limb Joint Models on Subject-Specific Musculoskeletal Models and Simulations of Daily Motor Activities
,”
J. Biomech.
,
48
(
16
), pp.
4198
4205
.
71.
El Habachi
,
A.
,
Moissenet
,
F.
,
Duprey
,
S.
,
Cheze
,
L.
, and
Dumas
,
R.
,
2015
, “
Global Sensitivity Analysis of the Joint Kinematics During Gait to the Parameters of a Lower Limb Multi-Body Model
,”
Med. Biol. Eng. Comput.
,
53
(
7
), pp.
655
667
.
72.
Pontonnier
,
C.
, and
Dumont
,
G.
,
2010
, “
From Motion Capture to Muscle Forces in the Human Elbow Aimed at Improving the Ergonomics of Workstations
,”
Virtual Phys. Prototyping
,
5
(
3
), pp.
113
122
.
73.
Bonnechère
,
B.
,
Sholukha
,
V.
,
Salvia
,
P.
,
Rooze
,
M.
, and
Van Sint Jan
,
S.
,
2015
, “
Physiologically Corrected Coupled Motion During Gait Analysis Using a Model-Based Approach
,”
Gait Posture
,
41
(
1
), pp.
319
322
.
74.
Kainz
,
H.
,
Modenese
,
L.
,
Lloyd
,
D. G.
,
Maine
,
S.
,
Walsh
,
H. P. J.
, and
Carty
,
C. P.
,
2016
, “
Joint Kinematic Calculation Based on Clinical Direct Kinematic versus Inverse Kinematic Gait Models
,”
J. Biomech.
,
49
(
9
), pp.
1658
1669
.
75.
Li
,
K.
,
Zheng
,
L.
,
Tashman
,
S.
, and
Zhang
,
X.
,
2012
, “
The Inaccuracy of Surface-Measured Model-Derived Tibiofemoral Kinematics
,”
J. Biomech.
,
45
(
15
), pp.
2719
2723
.
76.
Myers
,
C. A.
,
Laz
,
P. J.
,
Shelburne
,
K. B.
, and
Davidson
,
B. S.
,
2015
, “
A Probabilistic Approach to Quantify the Impact of Uncertainty Propagation in Musculoskeletal Simulations
,”
Ann. Biomed. Eng.
,
43
(
5
), pp.
1098
1111
.
77.
Scheys
,
L.
,
Desloovere
,
K.
,
Spaepen
,
A.
,
Suetens
,
P.
, and
Jonkers
,
I.
,
2011
, “
Calculating Gait Kinematics Using MR-Based Kinematic Models
,”
Gait Posture
,
33
(
2
), pp.
158
164
.
78.
Sholukha
,
V.
,
Leardini
,
A.
,
Salvia
,
P.
,
Rooze
,
M.
, and
Van Sint Jan
,
S.
,
2006
, “
Double-Step Registration of In Vivo Stereophotogrammetry With Both In Vitro 6-DOFs Electrogoniometry and CT Medical Imaging
,”
J. Biomech.
,
39
(
11
), pp.
2087
2095
.
79.
Zheng
,
L.
,
Li
,
K.
,
Shetye
,
S.
, and
Zhang
,
X.
,
2014
, “
Integrating Dynamic Stereo-Radiography and Surface-Based Motion Data for Subject-Specific Musculoskeletal Dynamic Modeling
,”
J. Biomech.
,
47
(
12
), pp.
3217
3221
.
80.
Andersen
,
M. S.
,
Benoit
,
D. L.
,
Damsgaard
,
M.
,
Ramsey
,
D. K.
, and
Rasmussen
,
J.
,
2010
, “
Do Kinematic Models Reduce the Effects of Soft Tissue Artefacts in Skin Marker-Based Motion Analysis? an In Vivo Study of Knee Kinematics
,”
J. Biomech.
,
43
(
2
), pp.
268
273
.
81.
Ehrig
,
R. M.
,
Taylor
,
W. R.
,
Duda
,
G. N.
, and
Heller
,
M. O.
,
2006
, “
A Survey of Formal Methods for Determining the centre of Rotation of Ball Joints
,”
J. Biomech.
,
39
(
15
), pp.
2798
2809
.
82.
Ehrig
,
R. M.
,
Taylor
,
W. R.
,
Duda
,
G. N.
, and
Heller
,
M. O.
,
2007
, “
A Survey of Formal Methods for Determining Functional Joint Axes
,”
J. Biomech.
,
40
(
10
), pp.
2150
2157
.
83.
Mokhtarzadeh
,
H.
,
Perraton
,
L.
,
Fok
,
L.
,
Muñoz
,
M. A.
,
Clark
,
R.
,
Pivonka
,
P.
, and
Bryant
,
A. L.
,
2014
, “
A Comparison of Optimisation Methods and Knee Joint Degrees of Freedom on Muscle Force Predictions During Single-Leg Hop Landings
,”
J. Biomech.
,
47
(
12
), pp.
2863
2868
.
84.
Valente
,
G.
,
Pitto
,
L.
,
Testi
,
D.
,
Seth
,
A.
,
Delp
,
S. L.
,
Stagni
,
R.
,
Viceconti
,
M.
, and
Taddei
,
F.
,
2014
, “
Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?
,”
PLoS One
,
9
(
11
), p.
e112625
.
85.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.
86.
Haykin
,
S.
, ed.,
2001
,
Kalman Filtering and Neural Networks
,
Wiley
, New York.
87.
Lisco
,
G.
,
Pastorelli
,
S.
, and
Gastaldi
,
L.
,
2016
, “
Application of a Functional Method for Subject and Motion Specific Joints Kinematics During Walking
,”
Int. J. Appl. Eng. Res.
,
11
(
11
), pp.
7588
7591
.https://www.ripublication.com/ijaer16/ijaerv11n11_65.pdf
88.
Kun
,
L.
,
Inoue
,
Y.
,
Shibata
,
K.
, and
Enguo
,
C.
,
2011
, “
Ambulatory Estimation of Knee-Joint Kinematics in Anatomical Coordinate System Using Accelerometers and Magnetometers
,”
IEEE Trans. Biomed. Eng.
,
58
(
2
), pp.
435
442
.
89.
Bélaise
,
C.
,
Blache
,
Y.
,
Thouzé
,
A.
,
Monnet
,
T.
, and
Begon
,
M.
,
2016
, “
Effect of Wobbling Mass Modeling on Joint Dynamics During Human Movements With Impacts
,”
Multibody Syst. Dyn.
,
38
(
4
), pp.
345
366
.
90.
Pain
,
M. T.
, and
Challis
,
J. H.
,
2006
, “
The Influence of Soft Tissue Movement on Ground Reaction Forces, Joint Torques and Joint Reaction Forces in Drop Landings
,”
J. Biomech.
,
39
(
1
), pp.
119
124
.
91.
Halvorsen
,
K.
,
Söderström
,
T.
,
Stokes
,
V.
, and
Lanshammar
,
H.
,
2004
, “
Using an Extended Kalman Filter for Rigid Body Pose Estimation
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
475
483
.
92.
Tondu
,
B.
,
2007
, “
Estimating Shoulder-Complex Mobility
,”
Appl. Bionics Biomech.
,
4
(
1
), pp.
104
112
.
93.
Yang
,
J.
,
Feng
,
X.
,
Kim
,
J. H.
, and
Rajulu
,
S.
,
2010
, “
Review of Biomechanical Models for Human Shoulder Complex
,”
Int. J. Hum. Factors Modell. Simul.
,
1
(
3
), pp.
271
293
.
94.
Benoit
,
D. L.
,
Damsgaard
,
M.
, and
Andersen
,
M. S.
,
2015
, “
Surface Marker Cluster Translation, Rotation, Scaling and Deformation: Their Contribution to Soft Tissue Artefact and Impact on Knee Joint Kinematics
,”
J. Biomech.
,
48
(
10
), pp.
2124
2129
.
95.
Dumas
,
R.
,
Camomilla
,
V.
,
Bonci
,
T.
,
Chèze
,
L.
, and
Cappozzo
,
A.
,
2015
, “
What Portion of the Soft Tissue Artefact Requires Compensation When Estimating Joint Kinematics?
,”
ASME J. Biomech. Eng.
,
137
(
6
), p.
064502
.
96.
Bonci
,
T.
,
Camomilla
,
V.
,
Dumas
,
R.
,
Chèze
,
L.
, and
Cappozzo
,
A.
,
2014
, “
A Soft Tissue Artefact Model Driven by Proximal and Distal Joint Kinematics
,”
J. Biomech.
,
47
(
10
), pp.
2354
2361
.
97.
Camomilla
,
V.
,
Bonci
,
T.
,
Dumas
,
R.
,
Chèze
,
L.
, and
Cappozzo
,
A.
,
2015
, “
A Model of the Soft Tissue Artefact Rigid Component
,”
J. Biomech.
,
48
(
10
), pp.
1752
1759
.
98.
Michaud
,
B.
,
Jackson
,
M.
,
Arndt
,
A.
,
Lundberg
,
A.
, and
Begon
,
M.
,
2016
, “
Determining In Vivo Sternoclavicular, Acromioclavicular and Glenohumeral Joint centre Locations From Skin Markers, CT-Scans and Intracortical Pins: A Comparison Study
,”
Med. Eng. Phys.
,
38
(
3
), pp.
290
296
.
99.
Pataky
,
T. C.
,
2012
, “
One-Dimensional Statistical Parametric Mapping in Python
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
3
), pp.
295
301
.
100.
Cereatti
,
A.
,
Bonci
,
T.
,
Akbarshahi
,
M.
,
Aminian
,
K.
,
Barre
,
A.
,
Begon
,
M.
,
Benoit
,
D. L.
,
Charbonnier
,
C.
,
Dal Maso
,
F.
,
Fantozzi
,
S.
,
Lin
,
C. C.
,
Lu
,
T. W.
,
Pandy
,
M. G.
,
Stagni
,
R.
,
van den Bogert
,
A. J.
, and
Camomilla
,
V.
,
2017
, “
Standardization Proposal of Soft Tissue Artefact Description for Data Sharing in Human Motion Measurements
,”
J. Biomech.
,
62
, pp.
5
13
.
101.
Bland
,
J.
, and
Altman
,
D. G.
,
1986
, “
Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement
,”
Lancet
,
327
(
8476
), pp.
307
310
.
102.
Cleather
,
D. J.
, and
Bull
,
A. M. J.
,
2011
, “
Knee and Hip Joint Forces – Sensitivity to the Degrees of Freedom Classification at the Knee
,”
Proc. Inst. Mech. Eng. Part H
,
225
(
6
), pp.
621
626
.
103.
Dumas
,
R.
,
Moissenet
,
F.
,
Gasparutto
,
X.
, and
Cheze
,
L.
,
2012
, “
Influence of Joint Models on Lower-Limb Musculo-Tendon Forces and Three-Dimensional Joint Reaction Forces During Gait
,”
Proc. Inst. Mech. Eng. Part H
,
226
(
2
), pp.
146
160
.
104.
Glitsch
,
U.
, and
Baumann
,
W.
,
1997
, “
The Three-Dimensional Determination of Internal Loads in the Lower Extremity
,”
J. Biomech.
,
30
(
11
), pp.
1123
1131
.
105.
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Seth
,
A.
,
Rajagopal
,
A.
, and
Delp
,
S. L.
,
2015
, “
Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020905
.
106.
Lund
,
M. E.
,
de Zee
,
M.
,
Andersen
,
M. S.
, and
Rasmussen
,
J.
,
2012
, “
On Validation of Multibody Musculoskeletal Models
,”
Proc. Inst. Mech. Eng. Part H
,
226
(
2
), pp.
82
94
.
You do not currently have access to this content.