Mechanical loading directs the differentiation of mesenchymal stem cells (MSCs) in vitro and it has been hypothesized that the mechanical environment plays a role in directing the cellular fate of MSCs in vivo. However, the complex multicellular composition of trabecular bone marrow means that the precise nature of mechanical stimulation that MSCs experience in their native environment is not fully understood. In this study, we developed a multiscale model that discretely represents the cellular constituents of trabecular bone marrow and applied this model to characterize mechanical stimulation of MCSs in vivo. We predicted that cell-level strains in certain locations of the trabecular marrow microenvironment were greater in magnitude (maximum ε12 = ∼24,000 με) than levels that have been found to result in osteogenic differentiation of MSCs in vitro (>8000 με), which may indicate that the native mechanical environment of MSCs could direct cellular fate in vivo. The results also showed that cell–cell adhesions could play an important role in mediating mechanical stimulation within the MSC population in vivo. The model was applied to investigate how changes that occur during osteoporosis affected mechanical stimulation in the cellular microenvironment of trabecular bone marrow. Specifically, a reduced bone volume (BV) resulted in an overall increase in bone deformation, leading to greater cell-level mechanical stimulation in trabecular bone marrow (maximum ε12 = ∼48,000 με). An increased marrow adipocyte content resulted in slightly lower levels of stimulation within the adjacent cell population due to a shielding effect caused by the more compliant behavior of adipocytes (maximum ε12 = ∼41,000 με). Despite this reduction, stimulation levels in trabecular bone marrow during osteoporosis remained much higher than those predicted to occur under healthy conditions. It was found that compensatory mechanobiological responses that occur during osteoporosis, such as increased trabecular stiffness and axial alignment of trabeculae, would be effective in returning MSC stimulation in trabecular marrow to normal levels. These results have provided novel insight into the mechanical stimulation of the trabecular marrow MSC population in both healthy and osteoporotic bone, and could inform the design three-dimensional (3D) in vitro bioreactor strategies techniques, which seek to emulate physiological conditions.

References

1.
Bruder
,
S. P.
,
Kurth
,
A. A.
,
Shea
,
M.
,
Hayes
,
W. C.
,
Jaiswal
,
N.
, and
Kadiyala
,
S.
,
1998
, “
Bone Regeneration by Implantation of Purified, Culture-Expanded Human Mesenchymal Stem Cells
,”
J. Orthop. Res.
,
16
(
2
), pp.
155
162
.10.1002/jor.1100160202
2.
Caplan
,
A. I.
,
1991
, “
Mesenchymal Stem Cells
,”
J. Orthop. Res.
,
9
(
5
), pp.
641
650
.10.1002/jor.1100090504
3.
Bruder
,
S. P.
,
Fink
,
D. J.
, and
Caplan
,
A. I.
,
1994
, “
Mesenchymal Stem Cells in Bone Development, Bone Repair, and Skeletal Regeneration Therapy
,”
J. Cell Biochem.
,
56
(
3
), pp.
283
294
.10.1002/jcb.240560303
4.
Petite
,
H.
,
Viateau
,
V.
,
Bensaid
,
W.
,
Meunier
,
A.
,
de Pollak
,
C.
,
Bourguignon
,
M.
,
Oudina
,
K.
,
Sedel
,
L.
, and
Guillemin
,
G.
,
2000
, “
Tissue-Engineered Bone Regeneration
,”
Nat. Biotechnol.
,
18
(
9
), pp.
959
963
.10.1038/79449
5.
Heino
,
T. J.
,
Hentunen
,
T. A.
, and
Vaananen
,
H. K.
,
2004
, “
Conditioned Medium From Osteocytes Stimulates the Proliferation of Bone Marrow Mesenchymal Stem Cells and Their Differentiation Into Osteoblasts
,”
Exp. Cell Res.
,
294
(
2
), pp.
458
468
.10.1016/j.yexcr.2003.11.016
6.
Csaki
,
C.
,
Matis
,
U.
,
Mobasheri
,
A.
, and
Shakibaei
,
M.
,
2009
, “
Co-Culture of Canine Mesenchymal Stem Cells With Primary Bone-Derived Osteoblasts Promotes Osteogenic Differentiation
,”
Histochem. Cell Biol.
,
131
(
2
), pp.
251
266
.10.1007/s00418-008-0524-6
7.
Birmingham
,
E.
,
Niebur
,
G. L.
,
McHugh
,
P. E.
,
Shaw
,
G.
,
Barry
,
F. P.
, and
McNamara
,
L. M.
,
2012
, “
Osteogenic Differentiation of Mesenchymal Stem Cells Is Regulated by Osteocyte and Osteoblast Cells in a Simplified Bone Niche
,”
Eur. Cells Mater.
,
23
, pp.
13
27
.
8.
Arnsdorf
,
E. J.
,
Tummala
,
P.
,
Kwon
,
R. Y.
, and
Jacobs
,
C. R.
,
2009
, “
Mechanically Induced Osteogenic Differentiation—The Role of RhoA, ROCKII and Cytoskeletal Dynamics
,”
J. Cell Sci.
,
122
(
4
), pp.
546
553
.10.1242/jcs.036293
9.
Case
,
N.
,
Sen
,
B.
,
Thomas
,
J. A.
,
Styner
,
M.
,
Xie
,
Z.
,
Jacobs
,
C. R.
, and
Rubin
,
J.
,
2011
, “
Steady and Oscillatory Fluid Flows Produce a Similar Osteogenic Phenotype
,”
Calcif. Tissue Int.
,
88
(
3
), pp.
189
197
.10.1007/s00223-010-9448-y
10.
Gurkan
,
U. A.
,
Krueger
,
A.
, and
Akkus
,
O.
,
2011
, “
Ossifying Bone Marrow Explant Culture as a Three-Dimensional Mechanoresponsive In Vitro Model of Osteogenesis
,”
Tissue Eng. Part A
,
17
(
3–4
), pp.
417
428
.10.1089/ten.tea.2010.0193
11.
Rubin
,
C. T.
,
Capilla
,
E.
,
Luu
,
Y. K.
,
Busa
,
B.
,
Crawford
,
H.
,
Nolan
,
D. J.
,
Mittal
,
V.
,
Rosen
,
C. J.
,
Pessin
,
J. E.
, and
Judex
,
S.
,
2007
, “
Adipogenesis Is Inhibited by Brief, Daily Exposure to High-Frequency, Extremely Low-Magnitude Mechanical Signals
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
45
), pp.
17879
17884
.10.1073/pnas.0708467104
12.
Sen
,
B.
,
Xie
,
Z.
,
Case
,
N.
,
Ma
,
M.
,
Rubin
,
C.
, and
Rubin
,
J.
,
2008
, “
Mechanical Strain Inhibits Adipogenesis in Mesenchymal Stem Cells by Stimulating a Durable Beta-Catenin Signal
,”
Endocrinology
,
149
(
12
), pp.
6065
6075
.10.1210/en.2008-0687
13.
Potier
,
E.
,
Noailly
,
J.
, and
Ito
,
K.
,
2010
, “
Directing Bone Marrow-Derived Stromal Cell Function With Mechanics
,”
J. Biomech.
,
43
(
5
), pp.
807
817
.10.1016/j.jbiomech.2009.11.019
14.
Kearney
,
E. M.
,
Farrell
,
E.
,
Prendergast
,
P. J.
, and
Campbell
,
V. A.
,
2010
, “
Tensile Strain as a Regulator of Mesenchymal Stem Cell Osteogenesis
,”
Ann. Biomed. Eng.
,
38
(
5
), pp.
1767
1779
.10.1007/s10439-010-9979-4
15.
Koike
,
M.
,
Shimokawa
,
H.
,
Kanno
,
Z.
,
Ohya
,
K.
, and
Soma
,
K.
,
2005
, “
Effects of Mechanical Strain on Proliferation and Differentiation of Bone Marrow Stromal Cell Line ST2
,”
J. Bone Miner. Metab.
,
23
(
3
), pp.
219
225
.10.1007/s00774-004-0587-y
16.
Steinjr
,
A. H.
,
Morgan
,
H. C.
, and
Porras
,
R. F.
,
1958
, “
The Effect of Pressor and Depressor Drugs on Intramedullary Bone-Marrow Pressure
,”
J. Bone Jt. Surg.
,
40
(
5
), pp.
1103
1110
.
17.
Shaw
,
N. E.
,
1963
, “
Observations on the Intramedullary Blood-Flow and Marrow-Pressure in Bone
,”
Clin. Sci.
,
24
, pp.
311
318
.
18.
Gurkan
,
U.
, and
Akkus
,
O.
,
2008
, “
The Mechanical Environment of Bone Marrow: A Review
,”
Ann. Biomed. Eng.
,
36
(
12
), pp.
1978
1991
.10.1007/s10439-008-9577-x
19.
Bauer
,
M. S.
, and
Walker
,
T. L.
,
1988
, “
Intramedullary Pressure in Canine Long Bones
,”
Am. J. Vet. Res.
,
49
(
3
), pp.
425
427
.
20.
Dickerson
,
D. A.
,
Sander
,
E. A.
, and
Nauman
,
E. A.
,
2008
, “
Modeling the Mechanical Consequences of Vibratory Loading in the Vertebral Body: Microscale Effects
,”
Biomech. Model. Mechanobiol.
,
7
(
3
), pp.
191
202
.10.1007/s10237-007-0085-y
21.
Birmingham
,
E.
,
Grogan
,
J. A.
,
Niebur
,
G. L.
,
McNamara
,
L. M.
, and
McHugh
,
P. E.
,
2013
, “
Computational Modelling of the Mechanics of Trabecular Bone and Marrow Using Fluid Structure Interaction Techniques
,”
Ann. Biomed. Eng.
,
41
(
4
), pp.
814
826
.10.1007/s10439-012-0714-1
22.
Coughlin
,
T. R.
, and
Niebur
,
G. L.
,
2012
, “
Fluid Shear Stress in Trabecular Bone Marrow due to Low-Magnitude High-Frequency Vibration
,”
J. Biomech.
,
45
(
13
), pp.
2222
2229
.10.1016/j.jbiomech.2012.06.020
23.
Teo
,
J. C. M.
, and
Teoh
,
S. H.
,
2011
, “
Permeability Study of Vertebral Cancellous Bone Using Micro-Computational Fluid Dynamics
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
4
), pp.
417
423
.10.1080/10255842.2010.539563
24.
Porter
,
B.
,
Zauel
,
R.
,
Stockman
,
H.
,
Guldberg
,
R.
, and
Fyhrie
,
D.
, 2005, “
3D Computational Modeling of Media Flow Through Scaffolds in a Perfusion Bioreactor
,”
J. Biomech.
,
38
(
3
), pp.
543
549
.10.1016/j.jbiomech.2004.04.011
25.
Justesen
,
J.
,
Stenderup
,
K.
,
Ebbesen
,
E. N.
,
Mosekilde
,
L.
,
Steiniche
,
T.
, and
Kassem
,
M.
,
2001
, “
Adipocyte Tissue Volume in Bone Marrow Is Increased With Aging and in Patients With Osteoporosis
,”
Biogerontology
,
2
(
3
), pp.
165
171
.10.1023/A:1011513223894
26.
Minaire
,
P.
,
Edouard
,
C.
,
Arlot
,
M.
, and
Meunier
,
P. J.
,
1984
, “
Marrow Changes in Paraplegic Patients
,”
Calcif. Tissue Int.
,
36
(
1
), pp.
338
340
.10.1007/BF02405340
27.
Waarsing
,
J. H.
,
Day
,
J. S.
,
Verhaar
,
J. A.
,
Ederveen
,
A. G.
, and
Weinans
,
H.
,
2006
, “
Bone Loss Dynamics Result in Trabecular Alignment in Aging and Ovariectomized Rats
,”
J. Orthop. Res.
,
24
(
5
), pp.
926
935
.10.1002/jor.20063
28.
McNamara
,
L. M.
,
Ederveen
,
A. G.
,
Lyons
,
C. G.
,
Price
,
C.
,
Schaffler
,
M. B.
,
Weinans
,
H.
, and
Prendergast
,
P. J.
,
2006
, “
Strength of Cancellous Bone Trabecular Tissue From Normal, Ovariectomized and Drug-Treated Rats Over the Course of Ageing
,”
Bone
,
39
(
2
), pp.
392
400
.10.1016/j.bone.2006.02.070
29.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
,
1996
, “
In Vivo Measurement of Human Tibial Strains During Vigorous Activity
,”
Bone
,
18
(
5
), pp.
405
410
.10.1016/8756-3282(96)00028-2
30.
Milgrom
,
C.
,
Finestone
,
A.
,
Sharkey
,
N.
,
Hamel
,
A.
,
Mandes
,
V.
,
Burr
,
D.
,
Arndt
,
A.
, and
Ekenman
,
I.
,
2002
, “
Metatarsal Strains Are Sufficient to Cause Fatigue Fracture During Cyclic Overloading
,”
Foot Ankle Int.
,
23
(
3
), pp.
230
235
.10.1177/107110070202300307
31.
McCarthy
,
C. T.
, and
Vaughan
,
T. J.
,
2011
, “
COMM Toolbox: A matlab Toolbox for Micromechanical Analysis of Composite Materials
,”
J. Compos. Mater.
,
46
(
14
), pp.
1715
1729
.10.1177/0021998311423984
32.
Vaughan
,
T. J.
, and
McCarthy
,
C. T.
,
2010
, “
A Combined Experimental–Numerical Approach for Generating Statistically Equivalent Fibre Distributions for High Strength Laminated Composite Materials
,”
Compos. Sci. Technol.
,
70
(
2
), pp.
291
297
.10.1016/j.compscitech.2009.10.020
33.
Vaughan
,
T. J.
, and
McCarthy
,
C. T.
,
2011
, “
A Micromechanical Study on the Effect of Intra-Ply Properties on Transverse Shear Fracture in Fibre Reinforced Composites
,”
Compos. Part A
,
42
(
9
), pp.
1217
1228
.10.1016/j.compositesa.2011.05.004
34.
Vaughan
,
T. J.
, and
McCarthy
,
C. T.
,
2011
, “
Micromechanical Modelling of the Transverse Damage Behaviour in Fibre Reinforced Composites
,”
Compos. Sci. Technol.
,
71
(
3
), pp.
388
396
.10.1016/j.compscitech.2010.12.006
35.
Vaughan
,
T. J.
,
McCarthy
,
C. T.
, and
McNamara
,
L. M.
,
2012
, “
A Three-Scale Finite Element Investigation Into the Effects of Tissue Mineralisation and Lamellar Organisation in Human Cortical and Trabecular Bone
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
50
62
.10.1016/j.jmbbm.2012.03.003
36.
Vaughan
,
T. J.
,
Verbruggen
,
S. W.
, and
McNamara
,
L. M.
,
2013
, “
Are All Osteocytes Equal? Multiscale Modelling of Cortical Bone to Characterise the Mechanical Stimulation of Osteocytes
,”
Int. J. Numer. Method Biomed. Eng.
,
29
(
12
), pp.
1361
1372
.10.1002/cnm.2578
37.
Onck
,
P. R.
,
Andrews
,
E. W.
, and
Gibson
,
L. J.
,
2001
, “
Size Effects in Ductile Cellular Solids. Part I: Modeling
,”
Int. J. Mech. Sci.
,
43
(
3
), pp.
681
699
.10.1016/S0020-7403(00)00042-4
38.
Dolan
,
E. B.
,
Vaughan
,
T. J.
,
Niebur
,
G. L.
,
Casey
,
C.
,
Tallon
,
D.
, and
McNamara
,
L.
,
2013
, “
How Bone Tissue and Cells Experience Elevated Temperatures During Orthopaedic Cutting: An Experimental and Computational Investigation
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021019
.10.1115/1.4026177
39.
McNamara
,
L.
,
Prendergast
,
P. J.
, and
Schaffler
,
M. B.
,
2005
, “
Bone Tissue Material Properties are Altered During Osteoporosis
,”
J. Musculoskeletal Neuronal Interact.
,
5
(
4
), pp.
342
343
.
40.
Zhong
,
Z.
, and
Akkus
,
O.
,
2011
, “
Effects of Age and Shear Rate on the Rheological Properties of Human Yellow Bone Marrow
,”
Biorheology
,
48
(
2
), pp.
89
97
.10.3233/BIR-2011-0587
41.
Ulrich
,
D.
,
van Rietbergen
,
B.
,
Weinans
,
H.
, and
Rüegsegger
,
P.
,
1998
, “
Finite Element Analysis of Trabecular Bone Structure: A Comparison of Image-Based Meshing Techniques
,”
J. Biomech.
,
31
(
12
), pp.
1187
1192
.10.1016/S0021-9290(98)00118-3
42.
Van Rietbergen
,
B.
,
Huiskes
,
R.
,
Eckstein
,
F.
, and
Rüegsegger
,
P.
,
2003
, “
Trabecular Bone Tissue Strains in the Healthy and Osteoporotic Human Femur
,”
J. Bone Miner. Res.
,
18
(
10
), pp.
1781
1788
.10.1359/jbmr.2003.18.10.1781
43.
Homminga
,
J.
,
Van-Rietbergen
,
B.
,
Lochmüller
,
E. M.
,
Weinans
,
H.
,
Eckstein
,
F.
, and
Huiskes
,
R.
,
2004
, “
The Osteoporotic Vertebral Structure Is Well Adapted to the Loads of Daily Life, but Not to Infrequent “Error” Loads
,”
Bone
,
34
(
3
), pp.
510
516
.10.1016/j.bone.2003.12.001
44.
Rubin
,
J.
,
Fan
,
X.
,
Biskobing
,
D. M.
,
Taylor
,
W. R.
, and
Rubin
,
C. T.
,
1999
, “
Osteoclastogenesis Is Repressed by Mechanical Strain in an In Vitro Model
,”
J. Orthop. Res.
,
17
(
5
), pp.
639
645
.10.1002/jor.1100170504
45.
Cheng
,
S.-L.
,
Shin
,
C. S.
,
Towler
,
D. A.
, and
Civitelli
,
R.
,
2000
, “
A Dominant Negative Cadherin Inhibits Osteoblast Differentiation
,”
J. Bone Miner. Res.
,
15
(
12
), pp.
2362
2370
.10.1359/jbmr.2000.15.12.2362
46.
Ferrari
,
S. L.
,
Traianedes
,
K.
,
Thorne
,
M.
,
Lafage-Proust
,
M.-H.
,
Genever
,
P.
,
Cecchini
,
M. G.
,
Behar
,
V.
,
Bisello
,
A.
,
Chorev
,
M.
,
Rosenblatt
,
M.
, and
Suva
,
L. J.
,
2000
, “
A Role for N-Cadherin in the Development of the Differentiated Osteoblastic Phenotype
,”
J. Bone Miner. Res.
,
15
(
2
), pp.
198
208
.10.1359/jbmr.2000.15.2.198
47.
Stains
,
J. P.
, and
Civitelli
,
R.
,
2005
, “
Cell–Cell Interactions in Regulating Osteogenesis and Osteoblast Function
,”
Birth Defects Res., Part C
,
75
(
1
), pp.
72
80
.10.1002/bdrc.20034
48.
Thompson
,
W. R.
,
Rubin
,
C. T.
, and
Rubin
,
J.
,
2012
, “
Mechanical Regulation of Signaling Pathways in Bone
,”
Gene
,
503
(
2
), pp.
179
193
.10.1016/j.gene.2012.04.076
49.
McNamara
,
L. M.
,
2010
, “
Perspective on Post-Menopausal Osteoporosis: Establishing an Interdisciplinary Understanding of the Sequence of Events From the Molecular Level to Whole Bone Fractures
,”
J. R. Soc., Interface
,
7
(
44
), pp.
353
372
.10.1098/rsif.2009.0282
50.
Martin
,
R. B.
, and
Zissimos
,
S. L.
,
1991
, “
Relationships Between Marrow Fat and Bone Turnover in Ovariectomized and Intact Rats
,”
Bone
,
12
(
2
), pp.
123
131
.10.1016/8756-3282(91)90011-7
You do not currently have access to this content.