Nonthermal irreversible electroporation (NTIRE) is an ablation modality that utilizes microsecond electric fields to produce nanoscale defects in the cell membrane. This results in selective cell death while preserving all other molecules, including the extracellular matrix. Here, finite element analysis and experimental results are utilized to examine the effect of NTIRE on the small intestine due to concern over collateral damage to this organ during NTIRE treatment of abdominal cancers. During previous studies, the electrical treatment parameters were chosen based on a simplified homogeneous tissue model. The small intestine, however, has very distinct layers, and a more realistic model is needed to further develop this technology for precise clinical applications. This study uses a two-dimensional finite element solution of the Laplace and heat conduction equations to investigate how small intestine heterogeneities affect the electric field and temperature distribution. Experimental results obtained by applying NTIRE to the rat small intestine in vivo support the heterogeneous effect of NTIRE on the tissue. The numerical modeling indicates that the electroporation parameters chosen for this study avoid thermal damage to the tissue. This is supported by histology obtained from the in vivo study, which showed preservation of extracellular structures. The finite element model also indicates that the heterogeneous structure of the small intestine has a significant effect on the electric field and volume of cell ablation during electroporation and could have a large impact on the extent of treatment. The heterogeneous nature of the tissue should be accounted for in clinical treatment planning.

References

1.
Rubinsky
,
B.
,
2007
, “
Irreversible Electroporation in Medicine
,”
Technol. Cancer Res. Treat.
,
6
(
4
), pp.
255
260
.
2.
Chang
,
I.
, and
Nguyen
,
U.
,
2004
, “
Thermal Modeling of Lesion Growth With Radiofrequency Ablation Devices
,”
Biomed. Eng. Online
,
3
(
27
), pp.
1
19
.10.1186/1475-925X-3-27
3.
Davalos
,
R.
,
Mir
,
L.
, and
Rubinsky
,
B.
,
2005
, “
Tissue Ablation With Irreversible Electroporation
,”
Ann. Biomed. Eng.
,
33
(
2
), pp.
223
231
.10.1007/s10439-005-8981-8
4.
Phillips
,
M.
,
Narayan
,
R.
,
Padath
,
T.
, and
Rubinsky
,
B.
,
2012
, “
Irreversible Electroporation on the Small Intestine
,”
Br. J. Cancer
,
106
(
3
), pp.
490
495
.10.1038/bjc.2011.582
5.
Daniels
,
C.
, and
Rubinsky
,
B.
,
2009
, “
Electrical Field and Temperature Model of Nonthermal Irreversible Electroporation in Heterogeneous Tissues
,”
ASME J. Biomech. Eng.
,
131
(
7
), p.
071006
.10.1115/1.3156808
6.
Neal
,
R.
, and
Davalos
,
R.
,
2009
, “
The Feasibility of Irreversible Electroporation for Treatment of Breast Cancer and Other Heterogeneous Systems
,”
Ann. Biomed. Eng.
,
37
(
12
), pp.
2615
2625
.10.1007/s10439-009-9796-9
7.
Pavselj
,
N.
,
Bregar
,
Z.
,
Cukjati
,
D.
,
Batiuskaite
,
D.
,
Mir
,
L. M.
, and
Miklavcic
,
D.
,
2005
, “
The Course of Tissue Permeabilization Studied on a Mathematical Model of a Subcutaneous Tumor in Small Animals
,”
IEEE Trans. Biomed. Eng.
,
52
(
8
), pp.
1373
1381
.10.1109/TBME.2005.851524
8.
Pavselj
,
N.
, and
Miklavcic
,
D.
,
2008
, “
Numerical Modeling in Electroporation-Based Biomedical Applications
,”
Radiol. Oncol.
,
42
(
3
), pp.
159
168
.0.2478/v10019-008-0008-2
9.
Corovic
,
S.
,
Mir
,
L. M.
, and
Miklavcic
,
D.
,
2011
, “
In Vivo Electroporation Threshold Determination: Realistic Numerical Models and in vivo Experiments
,”
J. Membr. Biol.
,
245
(
9
), pp.
509
520
.10.1007/s00232-012-9432-8
10.
Becker
,
S.
, and
Kuznetsov
,
A.
,
2007
, “
Thermal Damage Reduction Associated With in vivo Skin Electroporation: A Numerical Investigation Justifying Aggressive Pre-Cooling
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
105
116
.10.1016/j.ijheatmasstransfer.2006.06.030
11.
Ivorra
,
A.
, and
Rubinsky
,
B.
,
2007
, “
In Vivo Electrical Impedance Measurements During and After Electroporation of Rat Liver
,”
Bioelectrochemistry
,
70
(
2
), pp.
287
295
.10.1016/j.bioelechem.2006.10.005
12.
Sel
,
D.
,
Cukjati
,
D.
,
Batiuskaite
,
D.
,
Slivnik
,
T.
,
Mir
,
L. M.
, and
Miklavcic
,
D.
,
2005
, “
Sequential Finite Element Model of Tissue Electropermeabilization
,”
IEEE Trans. Biomed. Eng.
,
52
(
5
), pp.
816
827
.10.1109/TBME.2005.845212
13.
Cukjakti
,
D.
,
Batiuskaite
,
D.
,
Andre
,
F.
,
Miklavcic
,
D.
, and
Mir
,
L. M.
,
2007
, “
Real Time Electroporation Control for Accurate and Safe in vivo Non-Viral Gene Therapy
,”
Bioelectrochemistry
,
70
(
2
), pp.
501
507
.10.1016/j.bioelechem.2006.11.001
14.
Ivorra
,
A.
,
Al-Sakere
,
B.
,
Rubinksy
,
B.
, and Mir, L.,
2009
, “In Vivo Electrical Conductivity Measurements During and After Tumor Electroporation: Conductivity Changes Reflect the Treatment Outcome,”
Physics in Medicine and Biology
,
54
(19), 5949–5963.
15.
Dou
,
Y.
,
Lu
,
X.
,
Zhao
,
J.
, and
Gregersen
,
H.
,
2002
, “
Morphometric and Biomechanical Remodeling in the Intestine After Small Bowel Resection in the Rat
,”
Neurogastroenterol. Motil.
,
14
(
1
), pp.
43
53
.10.1046/j.1365-2982.2002.00301.x
16.
Davalos
,
R.
,
Rubinsky
,
B.
, and
Mir
,
L. M.
,
2003
, “
Theoretical Analysis of the Thermal Effects During in vivo Tissue Electroporation
,”
Bioelectrochemistry
,
61
(
1–2
), pp.
99
107
.10.1016/j.bioelechem.2003.07.001
17.
Maor
,
E.
, and
Rubinsky
,
B.
,
2010
, “
Endovascular Nonthermal Irreversible Electroporation: A Finite Element Analysis
,”
ASME J. Biomech. Eng.
,
132(3)
, p.
031008
.10.1115/1.4001035
18.
Joines
,
W.
,
Zhang
,
Y.
,
Li
,
C.
, and
Jirtle
,
R.
,
1994
, “
The Measured Electrical Properties of Normal and Malignant Human Tissues From 50 to 900 MHz
,”
Med. Phys.
,
21
(
4
), pp.
547
550
.10.1118/1.597312
19.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2003
, “
Temperature Dependence of Thermal Conductivity of Biological Tissues
,”
Physiol. Meas.
,
24
(
3
), pp.
769
783
.10.1088/0967-3334/24/3/312
20.
Corovic
,
S.
,
Lackovic
,
I.
,
Sustaric
,
P.
,
Sustar
,
T.
,
Rodic
,
T.
, and
Miklavcic
,
D.
,
2013
, “
Modeling of Electric Field Distribution in Tissue During Electroporation
,”
Biomed. Eng. Online
,
12
(
16
), pp.
1
27
.10.1186/1475-925X-12-16
21.
Sano
,
M.
,
Neal
,
R.
,
Garcia
,
P.
,
Gerber
,
D.
,
Robertson
,
J.
, and
Davalos
,
R.
,
2010
, “
Towards the Creation of Decellularized Organ Constructs Using Irreversible Electroporation and Active Mechanical Perfusion
,”
Biomed. Eng. Online
,
9
(
83
), pp.
1
16
.10.1186/1475-925X-9-83
22.
Garcia
,
P.
,
Rossmeisl
,
J.
,
Neal
,
R.
,
Ellis
,
T.
,
Olson
,
J.
,
Henao-Guerrero
,
N.
,
Robertson
,
J.
, and
Davalos
,
R.
,
2010
, “
Intracranial Nonthermal Irreversible Electroporation: In Vivo Analysis
,”
J. Membr. Biol.
,
236
(
1
), pp.
127
136
.10.1007/s00232-010-9284-z
23.
Gehl
,
J.
,
Skovsgaard
,
T.
, and
Mir
,
L. M.
,
2002
, “
Vascular Reactions to in vivo Electroporation: Characterization and Consequences for Drug and Gene Delivery
,”
Biochim. Biophys. Acta
,
1569
(
1–3
), pp.
51
58
.10.1016/S0304-4165(01)00233-1
24.
Phillips
,
M.
,
Maor
,
E.
, and
Rubinsky
,
B.
,
2011
, “
Principles of Tissue Engineering With Nonthermal Irreversible Electroporation
,”
ASME J. Heat Transfer
,
133
(
1
), p.
011004
.10.1115/1.4002301
25.
Tropea
,
B. I.
, and
Lee
,
R. C.
,
1992
, “
Thermal Injury Kinetics in Electrical Trauma
,”
ASME J. Biomech. Eng.
,
114
(
2
), pp.
241
250
.10.1115/1.2891378
26.
Lee
,
R. C.
,
1991
, “
Physical Mechanisms of Tissue Injury in Electrical Trauma
,”
IEEE Trans. Educ.
,
34
(
3
), pp.
223
230
.10.1109/13.85080
27.
Agah
,
R.
,
Pearce
,
J.
,
Welch
,
A.
, and
Motamedi
,
M.
,
1994
, “
Rate Process Model for Arterial Tissue Damage: Implications on Vessel Photocoagulation
,”
Lasers Surg. Med.
,
15
(
2
), pp.
176
184
.10.1002/lsm.1900150205
28.
Orgill
,
D.
,
Solari
,
M.
,
Barlow
,
M.
, and
O'Connor
,
N.
,
1998
, “
A Finite-Element Model Predicts Thermal Damage in Cutaneous Contact Burns
,”
J. Burn Care Rehabil.
,
19
(
3
), pp.
203
209
.10.1097/00004630-199805000-00003
29.
Lee
,
R.
, and
Astumian
,
R.
,
1996
, “
The Physiochemical Basis for Thermal and Non-Thermal “Burn” Injuries
,”
Burns
,
22
(
7
), pp.
509
519
.10.1016/0305-4179(96)00051-4
30.
Wright
,
N.
,
2003
, “
On a Relationship Between the Arrhenius Parameters From Thermal Damage Studies
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
300
304
.10.1115/1.1553974
31.
Corovic
,
S.
,
Zupanic
,
A.
,
Kranjc
,
S.
,
Al Sakere
,
B.
,
Leroy-Willig
,
A.
,
Mir.
,
L. M.
, and
Miklavcic
,
D.
,
2010
, “
The Influence of Skeletal Muscle Anisotropy on Electroporation: In Vivo Study and Numerical Modeling
,”
Med. Biol. Eng. Comput.
,
48
(
7
), pp.
637
648
.10.1007/s11517-010-0614-1
32.
Srimathveeravalli
,
G.
,
Wimmer
,
T.
,
Monette
,
S.
,
Gutta
,
N.
,
Ezell
,
P.
,
Maybody
,
M.
,
Weiser
,
M.
, and
Solomon
,
S.
,
2013
, “
Evaluation of an Endorectal Electrode for Performing Focused Irreversible Electroporation Ablations in the Swine Rectum
,”
J. Vasc. Interv. Radiol.
,
24
(
8
), pp.
1249
1256
.10.1016/j.jvir.2013.04.025
33.
Gabriel
,
C.
,
Peyman
,
A.
, and
Grant
,
E.
,
2009
, “
Electrical Conductivity of Tissue at Frequencies Below 1 MHz
,”
Phys. Med. Biol.
,
54
(
16
), pp.
4863
4878
.10.1088/0031-9155/54/16/002
34.
Zupanic
,
A.
, and
Miklavcic
,
D.
,
2010
, “
Optimization and Numerical Modeling in IRE Treatment Planning
,”
Irreversible Electroporation: Series in Biomedical Engineering
,
B.
Rubinsky
, ed.,
Springer
,
Berlin, Germany
, pp.
203
222
.
35.
Dickson
,
J.
, and
Calderwood
,
S.
,
1980
, “
Temperature Range and Selective Sensitivity of Tumors to Hyperthermia: A Critical Review
,”
Ann. N.Y. Acad. Sci.
,
355
, pp.
180
205
.10.1111/j.1749-6632.1980.tb50749.x
36.
Shafiee
,
H.
,
Garcia
,
P.
, and
Davalos
,
R.
,
2009
, “
A Preliminary Study to Delineate Irreversible Electroporation From Thermal Damage Using the Arrehnius Equation
,”
ASME J. Biomech. Eng.
,
131
(
7
), p.
074509
.10.1115/1.3143027
37.
Duck
,
F. A.
,
1990
,
Physical Properties of Tissue: A Comprehensive Reference Book
,
Academic
,
London, UK
.
You do not currently have access to this content.