Finite helical axes (FHAs) are a potentially effective tool for joint kinematic analysis. Unfortunately, no straightforward guidelines exist for calculating accurate FHAs using prepackaged six degree-of-freedom (6DOF) rigid body trackers. Thus, this study aimed to: (1) describe a protocol for calculating FHA parameters from 6DOF rigid body trackers using the screw matrix and (2) to maximize the number of accurate FHAs generated from a given data set using a moving window analysis. Four Optotrak® Smart Markers were used as the rigid body trackers, two moving and two fixed, at different distances from the hinge joint of a custom-machined jig. 6DOF pose information was generated from 51 static positions of the jig rotated and fixed in 0.5 deg increments up to 25 deg. Output metrics included the FHA direction cosines, the rotation about the FHA, the translation along the axis, and the intercept of the FHA with the plane normal to the jig's hinge joint. FHA metrics were calculated using the relative tracker rotation from the starting position, and using a moving window analysis to define a minimum acceptable rotational displacement between the moving tracker data points. Data analysis found all FHA rotations calculated from the starting position were within 0.15 deg of the prescribed jig rotation. FHA intercepts were most stable when determined using trackers closest to the hinge axis. Increasing the moving window size improved the FHA direction cosines and center of rotation accuracy. Window sizes larger than 2 deg had an intercept deviation of less than 1 mm. Furthermore, compared to the 0 deg window size, the 2 deg window had a 90% improvement in FHA intercept precision while generating almost an equivalent number of FHA axes. This work identified a solution to improve FHA calculations for biomechanical researchers looking to describe changes in 3D joint motion.

References

1.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1990
, “
Helical axes of Passive Knee Joint Motions
,”
J. Biomech.
,
23
(
12
), pp.
1219
1229
.10.1016/0021-9290(90)90379-H
2.
Kettler
,
A.
,
Marin
,
F.
,
Sattelmayer
,
G.
,
Mohr
,
M.
,
Mannel
,
H.
,
Dürselen
,
L.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2004
, “
Finite Helical Axes of Motion are a Useful Tool to Describe the Three-Dimensional in Vitro Kinematics of the Intact, Injured and Stabilised Spine
,”
Eur. Spine J.
,
13
(
6
), pp.
553
559
.10.1007/s00586-004-0710-8
3.
Duck
,
T. R.
,
Dunning
,
C. E.
,
Armstrong
,
A. D.
,
Johnson
,
J. A.
, and
King
,
G. J.
,
2003
, “
Application of Screw Displacement Axes to Quantify Elbow Instability
,”
Clin. Biomech.
,
18
(
4
), pp.
303
310
.10.1016/S0268-0033(03)00021-4
4.
Graf
,
E. S.
,
Wright
,
I. C.
, and
Stefanyshyn
,
D. J.
,
2012
, “
Effect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach
,”
Comput. Math. Methods Med.
,
2012
, p.
368050
.10.1155/2012/368050
5.
Woltring
,
H.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1985
, “
Finite Centroid and Helical Axis Estimation From Noisy Landmark Measurements in the Study of Human Joint Kinematics
,”
J. Biomech.
,
18
(
5
), pp.
379
389
.10.1016/0021-9290(85)90293-3
6.
Spoor
,
C.
, and
Veldpaus
,
F.
,
1980
, “
Rigid Body Motion Calculated From Spatial Co-ordinates of Markers
,”
J. Biomech.
,
13
(
4
), pp.
391
393
.10.1016/0021-9290(80)90020-2
7.
Kinzel
,
G.
,
Hall
,
A.
, and
Hillberry
,
B.
,
1972
, “
Measurement of the Total Motion Between Two Body Segments—I. Analytical Development
,”
J. Biomech.
,
5
(
1
), pp.
93
105
.10.1016/0021-9290(72)90022-X
8.
Metzger
,
M. F.
,
Faruk Senan
,
N. A.
,
O'Reilly
,
O. M.
, and
Lotz
,
J. C.
,
2010
, “
Minimizing Errors Associated With Calculating the Location of the Helical Axis for Spinal Motions
,”
J. Biomech.
,
43
(
14
), pp.
2822
2829
.10.1016/j.jbiomech.2010.05.034
9.
Markley
,
F.
,
1988
, “
Attitude Determination Using Vector Observations and the Singular Value Decomposition
,”
J. Astronaut. Sci.
,
36
(
3
), pp.
245
258
.
10.
Beggs
,
J. S.
,
1983
,
Kinematics
,
Hemisphere
,
Washington, DC
.
11.
Crawford
,
N. R.
,
2006
, “
Technical Note: Determining and Displaying the Instantaneous Axis of Rotation of the Spine
,”
World Spine J.
,
1
(
1
), pp.
53
56
.
12.
Ferreira
,
L. M.
,
King
,
G. J. W.
, and
Johnson
,
J. A.
,
2011
, “
Motion-derived Coordinate Systems Reduce Inter-subject Variability of Elbow Flexion Kinematics
,”
J. Orthop. Res.
,
29
(
4
), pp.
596
601
.10.1002/jor.21278
13.
Craig
,
J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
14.
Duck
,
T. R.
,
Ferreira
,
L. M.
,
King
,
G. J. W.
, and
Johnson
,
J. A.
,
2004
, “
Assessment of Screw Displacement Axis Accuracy and Repeatability for Joint Kinematic Description Using an Electromagnetic Tracking Device
,”
J. Biomech.
,
37
(
1
), pp.
163
167
.10.1016/S0021-9290(03)00007-1
15.
Schmidt
,
J.
,
Berg
,
D.
,
Ploeg
,
H.
, and
Ploeg
,
L.
,
2009
, “
Precision, Repeatability and Accuracy of Optotrak® Optical Motion Tracking Systems
,”
Int. J. Exp. Comput. Biomech.
,
1
(
1
), pp.
114
127
.10.1504/IJECB.2009.022862
16.
Bottlang
,
M.
,
Marsh
,
J. L.
, and
Brown
,
T. D.
,
1998
, “
Factors Influencing Accuracy of Screw Displacement Axis Detection With a DC-based Electromagnetic Tracking System
,”
ASME J. Biomech. Eng.
,
120
(
3
), pp.
431
435
.10.1115/1.2798011
You do not currently have access to this content.