Motion capture systems are often used for checking and analyzing human motion in biomechanical applications. It is important, in this context, that the systems provide the best possible accuracy. Among existing capture systems, optical systems are those with the highest accuracy. In this paper, the development of a new calibration procedure for optical human motion capture systems is presented. The performance and effectiveness of that new calibration procedure are also checked by experimental validation. The new calibration procedure consists of two stages. In the first stage, initial estimators of intrinsic and extrinsic parameters are sought. The camera calibration method used in this stage is the one proposed by Tsai. These parameters are determined from the camera characteristics, the spatial position of the camera, and the center of the capture volume. In the second stage, a simultaneous nonlinear optimization of all parameters is performed to identify the optimal values, which minimize the objective function. The objective function, in this case, minimizes two errors. The first error is the distance error between two markers placed in a wand. The second error is the error of position and orientation of the retroreflective markers of a static calibration object. The real co-ordinates of the two objects are calibrated in a co-ordinate measuring machine (CMM). The OrthoBio system is used to validate the new calibration procedure. Results are 90% lower than those from the previous calibration software and broadly comparable with results from a similarly configured Vicon system.

References

1.
Nataraj
,
R.
, and
Li
,
Z.-M.
,
2013
, “
Robust Identification of Three-Dimensional Thumb and Index Finger Kinematics With a Minimal Set of Markers
,”
ASME J. Biomech. Eng.
,
135
(
9
), p.
091002
.10.1115/1.4024753
2.
Gabra
,
J. N.
,
Domalain
,
M.
, and
Li
,
Z.-M.
,
2012
, “
Movement of the Distal Carpal Row During Narrowing and Widening of the Carpal Arch Width
,”
ASME J. Biomech. Eng.
,
134
(
10
), p.
101004
.10.1115/1.4007634
3.
Isableu
,
B.
,
Hansen
,
C.
,
Rezzoug
,
N.
,
Gorce
,
P.
, and
Pagano
,
C. C.
,
2013
, “
Velocity-Dependent Changes of Rotational Axes During the Control of Unconstrained 3D Arm Motions Depend on Initial Instruction on Limb Position
,”
Hum. Mov. Sci.
,
32
(
2
), pp.
290
300
.10.1016/j.humov.2013.02.006
4.
Neves
,
T. J.
,
Johnson
,
W. A.
,
Myrer
,
J. W.
, and
Seeley
,
M. K.
,
2011
, “
Comparison of the Traditional, Swing, and Chicken Wing Volleyball Blocking Techniques in NCAA Division I Female Athletes
,”
J. Sports Sci. Med.
,
10
(
3
), pp.
452
457
.
5.
Murphy
,
M. A.
,
Sunnerhagen
,
K. S.
,
Johnels
,
B.
, and
Willen
,
C.
,
2006
, “
Three-Dimensional Kinematic Motion Analysis of a Daily Activity Drinking From a Glass: A Pilot Study
,”
J. Neuroeng. Rehab.
,
3
(
1
), p.
18
.10.1186/1743-0003-3-18
6.
Leitkam
,
S. T.
,
Bush
,
T. R.
, and
Li
,
M.
,
2011
, “
A Methodology for Quantifying Seated Lumbar Curvatures
,”
ASME J. Biomech. Eng.
,
133
(
11
), p.
114502
.10.1115/1.4005400
7.
Choi
,
A. R.
,
Kim
,
Y. J.
,
Rim
,
Y. H.
,
Kang
,
T. G.
,
Min
,
K.-K.
,
Bae
,
J.-H.
,
Lee
,
S.-S.
,
Lee
,
K. S.
, and
Mun
,
J. H.
,
2007
, “
Development of a Spine Kinematic Model for the Clinical Estimation of Abnormal Curvature
,”
IFMBE Proceedings, World Congress on Medical Physics and Biomedical Engineering 2006
,
Seoul, Korea
, Aug. 27–Sept. 1, Vol 14, pp.
2892
2895
.
8.
Lee
,
R. Y. W.
, and
Wong
,
T. K. T.
,
2002
, “
Relationship Between the Movements of the Lumbar Spine and Hip
,”
Hum. Mov. Sci.
,
21
(
4
), pp.
481
494
.10.1016/S0167-9457(02)00117-3
9.
Rouhani
,
H.
,
Favre
,
J.
,
Crevoisier
,
X.
, and
Aminian
,
K.
,
2012
, “
Measurement of Multi-Segment Foot Joint Angles During Gait Using a Wearable System
,”
ASME J. Biomech. Eng.
,
134
(
6
), p.
061006
.10.1115/1.4006674
10.
Dowling
,
A. V.
,
Fisher
,
D. S.
, and
Andriacchi
,
T. P.
,
2010
, “
Gait Modification via Verbal Instruction and an Active Feedback System to Reduce Peak Knee Adduction Moment
,”
ASME J. Biomech. Eng.
,
132
(
7
), p.
071007
.10.1115/1.4001584
11.
Glaister
,
B. C.
,
Schoen
,
J. A.
,
Orendurff
,
M. S.
, and
Klute
,
G. K.
,
2009
, “
A Mechanical Model of the Human Ankle in the Transverse Plane During Straight Walking: Implications for Prosthetic Design
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
034501
.10.1115/1.3005153
12.
Villarroya
,
A.
,
Aguilar
,
J. J.
,
Torres
,
F.
, and
Asirón
,
P. J.
,
1997
, “
OrthoBio: un Nuevo Sistema de Análisis del Movimiento en Tres Dimensiones
,”
Rehabilitación
,
31
(
4
), pp.
265
272
.
13.
Royo
,
A. C.
,
Aguilar
,
J. J.
,
Martínez
,
M. A.
,
Pastor
,
J. J.
, and
Guillomía
,
D.
,
2006
, “
Análisis y Caracterización Experimental del Sistema Vicon de Análisis del Movimiento Humano
,”
Proc. XVIII Congreso Internacional de Ingeniería Gráfica
,
Barcelona, Spain
, Departamento de Expresión Gráfica en la Ingeniería de la Universidad Politécnica de Cataluña.
14.
Royo
,
A. C.
,
Aguilar
,
J. J.
,
Santolaria
,
J.
, and
Martínez
,
M. A.
,
2008
, “
Análisis, Caracterización Experimental y Optimización de Sistemas de Análisis del Movimiento Humano
,”
Proc. XX Congreso Internacional de Ingeniería Gráfica
,
Valencia, Spain
, Editorial de la Universidad Politécnica de Valencia, Ref. 2008.2160.
15.
Royo
,
A. C.
,
Aguilar
,
J. J.
,
Martínez
,
M. A.
,
Fernández
,
A.
, and
Cajal
,
C.
,
2006
, “
Desarrollo de un Procedimiento de Caracterización de Sistemas de Análisis del Movimiento Humano
,”
Proc. XVIII Congreso Internacional de Ingeniería Gráfica
,
Barcelona, Spain
, Departamento de Expresión Gráfica en la Ingeniería de la Universidad Politécnica de Cataluña.
16.
Ehara
,
Y.
,
Fujimoto
,
H.
,
Miyazaki
,
S.
,
Mochimaru
,
M.
,
Tanaka
,
S.
, and
Yamamoto
,
S.
,
1997
, “
Comparison of the Performance of 3D Camera Systems II
,”
Gait Posture
,
5
(
3
), pp.
251
255
.10.1016/S0966-6362(96)01093-4
17.
Santolaria
,
J.
,
Aguilar
,
J. J.
,
Yagüe
,
J. A.
, and
Pastor
,
J. J.
,
2008
, “
Kinematic Parameter Estimation Technique for Calibration and Repeatability Improvement of Articulated Arm Coordinate Measuring Machines
,”
Precis. Eng.
,
32
(
4
), pp.
251
268
.10.1016/j.precisioneng.2007.09.002
18.
Hughes
,
E. B.
,
Forbes
,
A. B.
,
Lewis
,
A.
,
Sun
,
W.
,
Veal
,
D.
, and
Nasr
,
K.
,
2011
, “
Laser Tracker Error Determination Using a Network Measurement
,”
Meas. Sci. Technol.
,
22
(
4
), p.
045103
.10.1088/0957-0233/22/4/045103
19.
Hollerbach
,
J. M.
, and
Wampler
,
C. W.
,
1996
, “
The Calibration Index and Taxonomy for Robot Kinematic Calibration Methods
,”
Int. J. Rob. Res.
,
15
(
6
), pp.
573
591
.10.1177/027836499601500604
20.
Slamani
,
M.
,
Mayer
,
R.
,
Balazinski
,
M.
,
Zargarbashi
,
S. H. H.
,
Engin
,
S.
, and
Lartigue
,
C.
,
2010
, “
Dynamic and Geometric Error Assessment of an XYC Axis Subset on Five-Axis High-Speed Machine Tools Using Programmed end Point Constraint Measurements
,”
Int. J. Adv. Manuf. Technol.
,
50
(
9–12
), pp.
1063
1073
.10.1007/s00170-010-2584-8
21.
Aguado
,
S.
,
Samper
,
D.
,
Santolaria
,
J.
, and
Aguilar
,
J. J.
,
2012
, “
Identification Strategy of Error Parameter in Volumetric Error Compensation of Machine Tool Based on Laser Tracker Measurements
,”
Int. J. Mach. Tool. Manuf.
,
53
(
1
), pp.
160
169
.10.1016/j.ijmachtools.2011.11.004
22.
Tsai
,
R
.,
1987
, “
A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras Lenses
,”
Int. J. Rob. Autom.
,
3
(
4
), pp.
323
342
.10.1109/JRA.1987.1087109
23.
Horn
,
B. K. P.
,
2000
, “
Tsai's Camera Calibration Method Revisited
,” http://people.csail.mit.edu/bkph/articles/Tsai_Revisited.pdf
24.
Marzan
,
G. T.
, and
Karara
,
H. M.
,
1975
, “
A Computer Program for Direct Linear Transformation Solution of the Collinearity Condition, and Some Applications of It
,”
Proceedings of the Symposium on Close-Range Photogrammetric Systems
, American Society of Photogrammetry,
Falls Church, VA
, pp.
420
476
.
25.
Neter
,
J.
,
Wasserman
,
W.
, and
Kutner
,
M. H.
,
1985
,
Applied Linear Statistical Models
,
Irwin, Homewood
,
IL
.
26.
Samper
,
D.
,
Santolaria
,
J.
,
Aguilar
,
J. J.
, et al,
2010
, “
MetroVisionLab Toolbox for Camera Calibration and Simulation
,” http://metrovisionlab.unizar.es
27.
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Problems in Least Squares
,”
Q. Appl. Math.
,
2
, pp.
164
168
.
28.
Marquardt
,
D.
,
1963
, “
An Algorithm for Least Squares Estimation of Nonlinear Parameters
,”
SIAM J. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
29.
Dennis
,
J. E.
,
1977
, “
Nonlinear Least Squares
,”
State of the Art in Numerical Analysis
,
D.
Jacobs
, ed.,
Academic
,
London, UK
, pp.
269
312
.
30.
Moré
,
J. J.
,
1977
, “
The Levenberg–Marquardt Algorithm: Implementation and Theory
,” Argonne National Laboratory, Argonne, IL, Report No. CONF-770636-1.
31.
William
,
H.
,
2002
,
Numerical Recipes in C++: The Art of Scientific Computing
,
Cambridge University
,
Cambridge, UK
.
32.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H. W.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
Springer
,
New York
.
You do not currently have access to this content.