The ability to replicate physiological hemodynamic conditions during in vitro tissue development has been recognized as an important aspect in the development and in vitro assessment of engineered heart valve tissues. Moreover, we have demonstrated that studies aiming to understand mechanical conditioning require separation of the major heart valve deformation loading modes: flow, stretch, and flexure (FSF) (Sacks et al., 2009, "Bioengineering Challenges for Heart Valve Tissue Engineering," Annu. Rev. Biomed. Eng., 11(1), pp. 289–313). To achieve these goals in a novel bioreactor design, we utilized a cylindrical conduit configuration for the conditioning chamber to allow for higher fluid velocities, translating to higher shear stresses on the in situ tissue specimens while retaining laminar flow conditions. Moving boundary computational fluid dynamic (CFD) simulations were performed to predict the flow field under combined cyclic flexure and steady flow (cyclic-flex-flow) states using various combinations of flow rate, and media viscosity. The device was successfully constructed and tested for incubator housing, gas exchange, and sterility. In addition, we performed a pilot experiment using biodegradable polymer scaffolds seeded with bone marrow derived stem cells (BMSCs) at a seeding density of 5 × 106 cells/cm2. The constructs were subjected to combined cyclic flexure (1 Hz frequency) and steady flow (Re = 1376; flow rate of 1.06 l/min (LPM); shear stress in the range of 0–9 dynes/cm2) for 2 weeks to permit physiological shear stress conditions. Assays revealed significantly (P < 0.05) higher amounts of collagen (2051 ± 256 μg/g) at the end of 2 weeks in comparison to similar experiments previously conducted in our laboratory but performed at subphysiological levels of shear stress (<2 dynes/cm2; Engelmayr et al., 2006, "Cyclic Flexure and Laminar Flow Synergistically Accelerate Mesenchymal Stem Cell-Mediated Engineered Tissue Formation: Implications for Engineered Heart Valve Tissues," Biomaterials, 27(36), pp. 6083–6095). The implications of this novel design are that fully coupled or decoupled physiological flow, flexure, and stretch modes of engineered tissue conditioning investigations can be readily accomplished with the inclusion of this device in experimental protocols on engineered heart valve tissue formation.

References

1.
Sacks
,
M. S.
,
Schoen
,
F. J.
, and
Mayer
,
J. E.
,
2009
, “
Bioengineering Challenges for Heart Valve Tissue Engineering
,”
Annu. Rev. Biomed. Eng.
,
11
, pp.
289
313
.10.1146/annurev-bioeng-061008-124903
2.
Hoerstrup
,
S. P.
,
Sodian
,
R.
,
Daebritz
,
S.
,
Wang
,
J.
,
Bacha
,
E. A.
,
Martin
,
D. P.
,
Moran
,
A. M.
,
Guleserian
,
K. J.
,
Sperling
,
J. S.
,
Kaushal
,
S.
,
Vacanti
,
J. P.
,
Schoen
,
F. J.
, and
Mayer
,
J. E.
Jr.
,
2000
, “
Functional Living Trileaflet Heart Valves Grown in Vitro
,”
Circulation
,
102
(
19 Suppl 3
), pp.
III44
III49
.10.1161/01.CIR.102.suppl_3.III-44
3.
Hoerstrup
,
S. P.
,
Sodian
,
R.
,
Sperling
,
J. S.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
Jr.
,
2000
, “
New Pulsatile Bioreactor for in Vitro Formation of Tissue Engineered Heart Valves
,”
Tissue Eng.
,
6
(
1
), pp.
75
79
.10.1089/107632700320919
4.
Sodian
,
R.
,
Hoerstrup
,
S. P.
,
Sperling
,
J. S.
,
Daebritz
,
S. H.
,
Martin
,
D. P.
,
Schoen
,
F. J.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
Jr.
,
2000
, “
Tissue Engineering of Heart Valves: In Vitro Experiences
,”
Ann. Thorac. Surg.
,
70
(
1
), pp.
140
144
.10.1016/S0003-4975(00)01255-8
5.
Stock
,
U. A.
, and
Vacanti
,
J. P.
,
2001
, “
Cardiovascular Physiology During Fetal Development and Implications for Tissue Engineering
,”
Tissue Eng.
,
7
(
1
), pp.
1
7
.10.1089/107632701300003241
6.
Xing
,
Y.
,
He
,
Z.
,
Warnock
,
J. N.
,
Hilbert
,
S. L.
, and
Yoganathan
,
A. P.
,
2004
, “
Effects of Constant Static Pressure on the Biological Properties of Porcine Aortic Valve Leaflets
,”
Ann. Biomed. Eng.
,
32
(
4
), pp.
555
562
.10.1023/B:ABME.0000019175.12013.8f
7.
Smith
,
J. D.
,
Davies
,
N.
,
Willis
,
A. I.
,
Sumpio
,
B. E.
, and
Zilla
,
P.
,
2001
, “
Cyclic Stretch Induces the Expression of Vascular Endothelial Growth Factor in Vascular Smooth Muscle Cells
,”
Endothelium
,
8
(
1
), pp.
41
48
. Available at: http://informahealthcare.com/doi/abs/10.3109/10623320109063156
8.
Bilodeau
,
K.
,
Couet
,
F.
,
Boccafoschi
,
F.
, and
Mantovani
,
D.
,
2005
, “
Design of a Perfusion Bioreactor Specific to the Regeneration of Vascular Tissues Under Mechanical Stresses
,”
Artif. Organs
,
29
(
11
), pp.
906
912
.10.1111/j.1525-1594.2005.00154.x
9.
Hoerstrup
,
S. P.
,
Zund
,
G.
,
Schnell
,
A. M.
,
Kolb
,
S. A.
,
Visjager
,
J. F.
,
Schoeberlein
,
A.
, and
Turina
,
M.
,
2000
, “
Optimized Growth Conditions for Tissue Engineering of Human Cardiovascular Structures
,”
Int. J. Artif. Organs
,
23
(
12
), pp.
817
823
.
10.
Dumont
,
K.
,
Yperman
,
J.
,
Verbeken
,
E.
,
Segers
,
P.
,
Meuris
,
B.
,
Vandenberghe
,
S.
,
Flameng
,
W.
, and
Verdonck
,
P. R.
,
2002
, “
Design of a New Pulsatile Bioreactor for Tissue Engineered Aortic Heart Valve Formation
,”
Artif. Organs
,
26
(
8
), pp.
710
714
.10.1046/j.1525-1594.2002.06931_3.x
11.
Hildebrand
,
D. K.
,
Wu
,
Z. J.
,
Mayer
,
J. E.
Jr.
, and
Sacks
,
M. S.
,
2004
, “
Design and Hydrodynamic Evaluation of a Novel Pulsatile Bioreactor for Biologically Active Heart Valves
,”
Ann. Biomed. Eng.
,
32
(
8
), pp.
1039
1049
.10.1114/B:ABME.0000036640.11387.4b
12.
Ramaswamy
,
S.
,
Gottlieb
,
D.
,
Engelmayr
,
G. C.
Jr.
,
Aikawa
,
E.
,
Schmidt
,
D. E.
,
Gaitan-Leon
,
D. M.
,
Sales
,
V. L.
,
Mayer
,
J. E.
Jr.
, and
Sacks
,
M. S.
,
2010
, “
The Role of Organ Level Conditioning on the Promotion of Engineered Heart Valve Tissue Development In-Vitro Using Mesenchymal Stem Cells
,”
Biomaterials
,
31
(
6
), pp.
1114
1125
.10.1016/j.biomaterials.2009.10.019
13.
Engelmayr
,
G. C.
Jr.
,
Sales
, V
. L.
,
Mayer
,
J. E.
Jr.
, and
Sacks
,
M. S.
,
2006
, “
Cyclic Flexure and Laminar Flow Synergistically Accelerate Mesenchymal Stem Cell-Mediated Engineered Tissue Formation: Implications for Engineered Heart Valve Tissues
,”
Biomaterials
,
27
(
36
), pp.
6083
6095
.10.1016/j.biomaterials.2006.07.045
14.
Engelmayr
,
G. C.
Jr.
,
Soletti
,
L.
,
Vigmostad
,
S. C.
,
Budilarto
,
S. G.
,
Federspiel
,
W. J.
,
Chandran
,
K. B.
,
Vorp
,
D. A.
, and
Sacks
,
M. S.
,
2008
, “
A Novel Flex-Stretch-Flow Bioreactor for the Study of Engineered Heart Valve Tissue Mechanobiology
,”
Ann. Biomed. Eng.
,
36
(
5
), pp.
700
712
.10.1007/s10439-008-9447-6
15.
Colazzo
,
F.
,
Sarathchandra
,
P.
,
Smolenski
,
R. T.
,
Chester
,
A. H.
,
Tseng
,
Y. T.
,
Czernuszka
,
J. T.
,
Yacoub
,
M. H.
, and
Taylor
,
P. M.
,
2011
, “
Extracellular Matrix Production by Adipose-Derived Stem Cells: Implications for Heart Valve Tissue Engineering
,”
Biomaterials
,
32
(
1
), pp.
119
127
.10.1016/j.biomaterials.2010.09.003
16.
Martinez
,
C.
,
Rath
,
S.
,
Van Gulden
,
S.
,
Pelaez
,
D.
,
Alfonso
,
A.
,
Fernandez
,
N.
,
Kos
,
L.
,
Cheung
,
H.
, and
Ramaswamy
,
S.
,
2013
, “
Periodontal Ligament Cells Cultured Under Steady-Flow Environments Demonstrate Potential for Use in Heart Valve Tissue Engineering
,”
Tissue Eng. Part A
,
19
(
3–4
), pp.
458
466
.10.1089/ten.tea.2012.0149
17.
Sacks
,
M. S.
,
Merryman
,
W. D.
, and
Schmidt
,
D. E.
,
2009
, “
On the Biomechanics of Heart Valve Function
,”
J. Biomech.
,
42
(
12
), pp.
1804
1824
.10.1016/j.jbiomech.2009.05.015
18.
Engelmayr
,
G. C.
Jr.
,
Rabkin
,
E.
,
Sutherland
,
F. W.
,
Schoen
,
F. J.
,
Mayer
,
J. E.
Jr.
, and
Sacks
,
M. S.
,
2005
, “
The Independent Role of Cyclic Flexure in the Early in Vitro Development of an Engineered Heart Valve Tissue
,”
Biomaterials
,
26
(
2
), pp.
175
187
.10.1016/j.biomaterials.2004.02.035
19.
Engelmayr
,
G. C.
Jr.
,
Hildebrand
,
D. K.
,
Sutherland
,
F. W.
,
Mayer
,
J. E.
Jr.
, and
Sacks
,
M. S.
,
2003
, “
A Novel Bioreactor for the Dynamic Flexural Stimulation of Tissue Engineered Heart Valve Biomaterials
,”
Biomaterials
,
24
(
14
), pp.
2523
2532
.10.1016/S0142-9612(03)00051-6
20.
Weston
,
M. W.
,
Laborde
,
D. V.
, and
Yoganathan
,
A. P.
,
1999
, “
Estimation of the Shear Stress on the Surface of an Aortic Valve Leaflet
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
572
579
.10.1114/1.199
21.
Yap
,
C. H.
,
Saikrishnan
,
N.
,
Tamilselvan
,
G.
, and
Yoganathan
,
A. P.
,
2012
, “
Experimental Measurement of Dynamic Fluid Shear Stress on the Aortic Surface of the Aortic Valve Leaflet
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
171
182
.10.1007/s10237-011-0301-7
22.
Yap
,
C. H.
,
Saikrishnan
,
N.
, and
Yoganathan
,
A. P.
,
2012
, “
Experimental Measurement of Dynamic Fluid Shear Stress on the Ventricular Surface of the Aortic Valve Leaflet
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
231
244
.10.1007/s10237-011-0306-2
23.
Chandra
,
S.
,
Rajamannan
,
N. M.
, and
Sucosky
,
P.
,
2012
, “
Computational Assessment of Bicuspid Aortic Valve Wall-Shear Stress: Implications for Calcific Aortic Valve Disease
,”
Biomech. Model. Mechanobiol.
,
11
(
7
), pp.
1085
1096
.10.1007/s10237-012-0375-x
24.
Sun
,
L.
,
Chandra
,
S.
, and
Sucosky
,
P.
,
2012
, “
Ex Vivo Evidence for the Contribution of Hemodynamic Shear Stress Abnormalities to the Early Pathogenesis of Calcific Bicuspid Aortic Valve Disease
,”
PLoS One
,
7
(
10
), p.
e48843
.10.1371/journal.pone.0048843
25.
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
,
2007
, “
Heart Valve Function: A Biomechanical Perspective
,”
Philos. Trans. R. Soc. London, Ser. B
,
362
(
1484
), pp.
1369
1391
.10.1098/rstb.2007.2122
26.
Hildebrand
,
D. K.
,
2003
, “
Design and Evaluation of a Novel Pulsatile Bioreactor for Biologically Active Heart Valves
,” Ph.D. thesis, University of Pittsburgh, PA.
27.
Spurk
,
J. H.
, and
Aksel
,
N.
,
2008
,
Fluid Mechanics
,
Springer
,
Berlin
.
28.
Li
,
D.
,
Dai
,
K.
, and
Tang
,
T.
,
2008
, “
Effects of Dextran on Proliferation and Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells
,”
Cytotherapy
,
10
(
6
), pp.
587
596
.10.1080/14653240802238330
29.
Van Den Broek
,
C. N.
,
Pullens
,
R. A.
,
Frobert
,
O.
,
Rutten
,
M. C.
,
Den Hartog
,
W. F.
, and
Van De Vosse
,
F. N.
,
2008
, “
Medium With Blood-Analog Mechanical Properties for Cardiovascular Tissue Culturing
,”
Biorheology
,
45
(
6
), pp.
651
661
.
30.
Doty
,
D. F.
,
Entzminger
,
G.
, and
Yang
,
A. Y.
,
1998
, “
Magnetism in High-Resolution NMR Probe Design. I: General Methods
,”
Concepts Magn. Reson. Part A
,
10
(
3
), pp.
133
156
.10.1002/(SICI)1099-0534(1998)10:3<133::AID-CMR1>3.0.CO;2-Y
31.
Ramaswamy
,
S.
,
Boronyak
,
S. M.
,
Goldberg
,
M.
,
Schornack
,
P. A.
, and
Sacks
,
M. S.
,
2009
, “
Design of a Novel, MRI-Compatible Bioreactor for Longitudinal Monitoring of Mechanically Conditioned Engineered Cardiovascular Constructs
,”
International Society for Magnetic Resonance in Medicine, 17th Scientific Meeting
,
Honolulu, HI
, April 18–24.
32.
Engelmayr
,
G. C.
Jr.
, and
Sacks
,
M. S.
,
2008
, “
Prediction of Extracellular Matrix Stiffness in Engineered Heart Valve Tissues Based on Nonwoven Scaffolds
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
309
321
.10.1007/s10237-007-0102-1
33.
Sutherland
,
F. W.
,
Perry
,
T. E.
,
Yu
,
Y.
,
Sherwood
,
M. C.
,
Rabkin
,
E.
,
Masuda
,
Y.
,
Garcia
,
G. A.
,
Mclellan
,
D. L.
,
Engelmayr
,
G. C.
Jr.
,
Sacks
,
M. S.
,
Schoen
,
F. J.
, and
Mayer
,
J. E.
Jr.
,
2005
, “
From Stem Cells to Viable Autologous Semilunar Heart Valve
,”
Circulation
,
111
(
21
), pp.
2783
2791
.10.1161/CIRCULATIONAHA.104.498378
34.
Gilmanov
,
A.
,
Sotiropoulos
,
F.
,
2005
, “
A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3D, Geometrically Complex, Moving Bodies
,”
J. Comput. Phys.
,
207
(2), pp.
457
492
.10.1016/j.jcp.2005.01.020
35.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2008
, “
Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction With Complex 3d Rigid Bodies
,”
J. Comput. Phys.
,
227
(
16
), pp.
7587
7620
.10.1016/j.jcp.2008.04.028
36.
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2007
, “
A Numerical Method for Solving the 3D Unsteady Incompressible Navier–Stokes Equations in Curvilinear Domains With Complex Immersed Boundaries
,”
J. Comput. Phys.
,
225
(
2
), pp.
1782
1809
.10.1016/j.jcp.2007.02.017
37.
Carson
,
F.
,
2007
,
Histotechnology: A Self Instruction Text
,
American Society for Clinical Pathology
,
Chicago, IL
.
38.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.10.1115/1.2795948
39.
Vesely
,
I.
,
2005
, “
Heart Valve Tissue Engineering
,”
Circ. Res.
,
97
(8), pp.
743
755
.10.1161/01.RES.0000185326.04010.9f
40.
Syedain
,
Z. H.
, and
Tranquillo
,
R. T.
,
2009
, “
Controlled Cyclic Stretch Bioreactor for Tissue-Engineered Heart Valves
,”
Biomaterials
,
30
(
25
), pp.
4078
4084
.10.1016/j.biomaterials.2009.04.027
41.
Schmidt
,
D.
, and
Hoerstrup
,
S. P.
,
2006
, “
Tissue Engineered Heart Valves Based on Human Cells
,”
Swiss Med. Wkly.
,
136
(
39–40
), pp.
618
623
.2006/39/smw-11400
42.
Schmidt
,
D.
,
Mol
,
A.
,
Kelm
,
J. M.
, and
Hoerstrup
,
S. P.
,
2007
, “
In Vitro Heart Valve Tissue Engineering
,”
Methods Mol. Med.
,
140
, pp.
319
330
.10.1007/978-1-59745-443-8
43.
Robinson
,
P. S.
,
Johnson
,
S. L.
,
Evans
,
M. C.
,
Barocas
, V
. H.
, and
Tranquillo
,
R. T.
,
2008
, “
Functional Tissue-Engineered Valves From Cell-Remodeled Fibrin With Commissural Alignment of Cell-Produced Collagen
,”
Tissue Eng. Part A
,
14
(
1
), pp.
83
95
.10.1089/ten.a.2007.0148
44.
Mol
,
A.
,
Rutten
,
M. C.
,
Driessen
,
N. J.
,
Bouten
,
C. V.
,
Zund
,
G.
,
Baaijens
,
F. P.
, and
Hoerstrup
,
S. P.
,
2006
, “
Autologous Human Tissue-Engineered Heart Valves: Prospects for Systemic Application
,”
Circulation
,
114
(
1 Suppl
), pp.
I152
I158
.10.1161/CIRCULATIONAHA.105.001123
45.
Mol
,
A.
,
Driessen
,
N. J.
,
Rutten
,
M. C.
,
Hoerstrup
,
S. P.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
,
2005
, “
Tissue Engineering of Human Heart Valve Leaflets: A Novel Bioreactor for a Strain-Based Conditioning Approach
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1778
1788
.10.1007/s10439-005-8025-4
46.
Hoerstrup
,
S. P.
,
Kadner
,
A.
,
Melnitchouk
,
S.
,
Trojan
,
A.
,
Eid
,
K.
,
Tracy
,
J.
,
Sodian
,
R.
,
Visjager
,
J. F.
,
Kolb
,
S. A.
,
Grunenfelder
,
J.
,
Zund
,
G.
, and
Turina
,
M. I.
,
2002
, “
Tissue Engineering of Functional Trileaflet Heart Valves From Human Marrow Stromal Cells
,”
Circulation
,
106
(
12 Suppl 1
), pp.
I143
I150
.
47.
Mendelson
,
K.
, and
Schoen
,
F. J.
,
2006
, “
Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges
,”
Ann. Biomed. Eng.
,
34
(
12
), pp.
1799
1819
.10.1007/s10439-006-9163-z
48.
Sucosky
,
P.
,
Padala
,
M.
,
Elhammali
,
A.
,
Balachandran
,
K.
,
Jo
,
H.
, and
Yoganathan
,
A. P.
,
2008
, “
Design of an Ex Vivo Culture System to Investigate the Effects of Shear Stress on Cardiovascular Tissue
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
035001
.10.1115/1.2907753
49.
Cacou
,
C.
,
Palmer
,
D.
,
Lee
,
D. A.
,
Bader
,
D. L.
, and
Shelton
,
J. C.
,
2000
, “
A System for Monitoring the Response of Uniaxial Strain on Cell Seeded Collagen Gels
,”
Med. Eng. Phys.
,
22
(
5
), pp.
327
333
.10.1016/S1350-4533(00)00040-0
50.
Jockenhoevel
,
S.
,
Zund
,
G.
,
Hoerstrup
,
S. P.
,
Schnell
,
A.
, and
Turina
,
M.
,
2002
, “
Cardiovascular Tissue Engineering: A New Laminar Flow Chamber for In Vitro Improvement of Mechanical Tissue Properties
,”
ASAIO J.
,
48
(
1
), pp.
8
11
.10.1097/00002480-200201000-00003
51.
Kim
,
B. S.
, and
Mooney
,
D. J.
,
2000
, “
Scaffolds for Engineering Smooth Muscle Under Cyclic Mechanical Strain Conditions
,”
ASME J. Biomech. Eng.
,
122
(
3
), pp.
210
215
.10.1115/1.429651
52.
Mitchell
,
S. B.
,
Sanders
,
J. E.
,
Garbini
,
J. L.
, and
Schuessler
,
P. K.
,
2001
, “
A Device to Apply User-Specified Strains to Biomaterials in Culture
,”
IEEE Trans. Biomed. Eng.
,
48
(
2
), pp.
268
273
.10.1109/10.909648
53.
Arnsdorf
,
E. J.
,
Tummala
,
P.
, and
Jacobs
,
C. R.
,
2009
, “
Non-Canonical WNT Signaling and N-Cadherin Related Beta-Catenin Signaling Play a Role in Mechanically Induced Osteogenic Cell Fate
,”
PLoS One
,
4
(
4
), p.
e5388
.10.1371/journal.pone.0005388
54.
Arnsdorf
,
E. J.
,
Tummala
,
P.
,
Kwon
,
R. Y.
, and
Jacobs
,
C. R.
,
2009
, “
Mechanically Induced Osteogenic Differentiation—The Role of Rhoa, Rockll and Cytoskeletal Dynamics
,”
J. Cell. Sci.
,
122
(
Pt 4
), pp.
546
553
.10.1242/jcs.036293
55.
Li
,
Y. J.
,
Batra
,
N. N.
,
You
,
L.
,
Meier
,
S. C.
,
Coe
,
I. A.
,
Yellowley
,
C. E.
, and
Jacobs
,
C. R.
,
2004
, “
Oscillatory Fluid Flow Affects Human Marrow Stromal Cell Proliferation and Differentiation
,”
J. Orthop. Res.
,
22
(
6
), pp.
1283
1289
.10.1016/j.orthres.2004.04.002
56.
Mirnajafi
,
A.
,
Zubiate
,
B.
, and
Sacks
,
M. S.
,
2010
, “
Effects of Cyclic Flexural Fatigue on Porcine Bioprosthetic Heart Valve Heterograft Biomaterials
,”
J. Biomed. Mater. Res. A
,
94
(
1
), pp.
205
213
.10.1002/jbm.a.32659
57.
Ramaswamy
,
S.
,
Schornack
,
P. A.
,
Smelko
,
A. G.
,
Boronyak
,
S. M.
,
Ivanova
,
J.
,
Mayer
,
J. E.
Jr.
, and
Sacks
,
M. S.
,
2012
, “
Superparamagnetic Iron Oxide (Spio) Labeling Efficiency and Subsequent MRI Tracking of Native Cell Populations Pertinent to Pulmonary Heart Valve Tissue Engineering Studies
,”
NMR Biomed.
,
25
(
3
), pp.
410
417
.10.1002/nbm.1642
You do not currently have access to this content.