Increasing interests have been raised toward the potential applications of biodegradable poly(lactic-co-glycolic acid) (PLGA) coatings for drug-eluting stents in order to improve the drug delivery and reduce adverse outcomes in stented arteries in patients. This article presents a mathematical model to describe the integrated processes of drug release in a stent with PLGA coating and subsequent drug delivery, distribution, and drug pharmacokinetics in the arterial wall. The integrated model takes into account the PLGA degradation and erosion, anisotropic drug diffusion in the arterial wall, and reversible drug binding. The model simulations first compare the drug delivery from a biodegradable PLGA coating with that from a biodurable coating, including the drug release profiles in the coating, average arterial drug levels, and arterial drug distribution. Using the model for the PLGA stent coating, the simulations further investigate drug internalization, interstitial fluid flow in the arterial wall, and stent embedment for their impact on drug delivery. Simulation results show that these three factors, while imposing little change in the drug release profiles, can greatly change the average drug concentrations in the arterial wall. In particular, each of the factors leads to significant and yet distinguished alterations in the arterial drug distribution that can potentially influence the treatment outcomes. The detailed integrated model provides insights into the design and evaluation of biodegradable PLGA-coated drug-eluting stents for improved intravascular drug delivery.

References

1.
Costa
,
M. A.
, and
Simon
,
D. I.
,
2005
, “
Molecular Basis of Restenosis and Drug-Eluting Stents
,”
Circulation
,
111
(
17
), pp.
2257
2273
.10.1161/01.CIR.0000163587.36485.A7
2.
Santin
,
M.
,
Colombo
,
P.
, and
Bruschi
,
G.
,
2005
, “
Interfacial Biology of In-Stent Restenosis
,”
Expert Rev. Med. Dev.
,
2
(
4
), pp.
429
443
.10.1586/17434440.2.4.429
3.
Khan
,
W.
,
Farah
,
S.
, and
Domb
,
A. J.
,
2012
, “
Drug Eluting Stents: Developments and Current Status
,”
J. Controlled Release
,
161
(
2
), pp.
703
712
.10.1016/j.jconrel.2012.02.010
4.
Venkatraman
,
S.
, and
Boey
,
F.
,
2007
, “
Release Profiles in Drug-Eluting Stents: Issues and Uncertainties
,”
J. Controlled Release
,
120
(
3
), pp.
149
160
.10.1016/j.jconrel.2007.04.022
5.
Virmani
,
R.
,
Guagliumi
,
G.
,
Farb
,
A.
,
Musumeci
,
G.
,
Grieco
,
N.
,
Motta
,
T.
,
Mihalcsik
,
L.
,
Tespili
,
M.
,
Valsecchi
,
O.
, and
Kolodgie
,
F. D.
,
2004
, “
Localized Hypersensitivity and Late Coronary Thrombosis Secondary to a Sirolimus-Eluting Stent Should We Be Cautious?
,”
Circulation
,
109
(
6
), pp.
701
705
.10.1161/01.CIR.0000116202.41966.D4
6.
Daemen
,
J.
, and
Serruys
,
P. W.
,
2007
, “
Drug-Eluting Stent Update 2007 Part I: A Survey of Current and Future Generation Drug-Eluting Stents: Meaningful Advances or More of the Same?
,”
Circulation
,
116
(
3
), pp.
316
328
.10.1161/CIRCULATIONAHA.106.621342
7.
Lüscher
,
T. F.
,
Steffel
,
J.
,
Eberli
,
F. R.
,
Joner
,
M.
,
Nakazawa
,
G.
,
Tanner
,
F. C.
, and
Virmani
,
R.
,
2007
, “
Drug-Eluting Stent and Coronary Thrombosis—Biological Mechanisms and Clinical Implications
,”
Circulation
,
115
(
8
), pp.
1051
1058
.10.1161/CIRCULATIONAHA.106.675934
8.
Acharya
,
G.
, and
Park
,
K.
,
2006
, “
Mechanisms of Controlled Drug Release From Drug-Eluting Stents
,”
Adv. Drug Delivery Rev.
,
58
(
3
), pp.
387
401
.10.1016/j.addr.2006.01.016
9.
Deconinck
,
E.
,
Sohier
,
I.
,
De Scheerder
,
I.
, and
Van Den Mooter
,
G.
,
2008
, “
Pharmaceutical Aspects of Drug Eluting Stents
,”
J. Pharm. Sci.
,
97
(
12
), pp.
5047
5060
.10.1002/jps.21356
10.
Xi
,
T. F.
,
Gao
,
R. L.
,
Xu
,
B.
,
Chen
,
L. A.
,
Luo
,
T.
,
Liu
,
J.
,
Wei
,
Y.
, and
Zhong
,
S. P.
,
2010
, “
In Vitro and In Vivo Changes to PLGA/Sirolimus Coating on Drug Eluting Stents
,”
Biomaterials
,
31
(
19
), pp.
5151
5158
.10.1016/j.biomaterials.2010.02.003
11.
Finkelstein
,
A.
,
Mcclean
,
D.
,
Kar
,
S.
,
Takizawa
,
K.
,
Varghese
,
K.
,
Baek
,
N.
,
Park
,
K.
,
Fishbein
,
M. C.
,
Makkar
,
R.
,
Litvack
,
F.
, and
Eigler
,
N. L.
,
2003
, “
Local Drug Delivery Via a Coronary Stent With Programmable Release Pharmacokinetics
,”
Circulation
,
107
(
5
), pp.
777
784
.10.1161/01.CIR.0000050367.65079.71
12.
Wang
,
X. T.
,
Venkatraman
,
S. S.
,
Boey
,
F. Y. C.
,
Loo
,
J. S. C.
, and
Tan
,
L. P.
,
2006
, “
Controlled Release of Sirolimus from a Multilayered PLGA Stent Matrix
,”
Biomaterials
,
27
(
32
), pp.
5588
5595
.10.1016/j.biomaterials.2006.07.016
13.
Pan
,
C.-J.
,
Tang
,
J.-J.
,
Weng
,
Y.-J.
,
Wang
,
J.
, and
Huang
,
N.
,
2009
, “
Preparation and In Vitro Release Profiles of Drug-Eluting Controlled Biodegradable Polymer Coating Stents
,”
Colloids Surf. B
,
73
(
2
), pp.
199
206
.10.1016/j.colsurfb.2009.05.016
14.
Klugherz
,
B. D.
,
Jones
,
P. L.
,
Cui
,
X. M.
,
Chen
,
W. L.
,
Meneveau
,
N. F.
,
Defelice
,
S.
,
Connolly
,
J.
,
Wilensky
,
R. L.
, and
Levy
,
R. J.
,
2000
, “
Gene Delivery From a DNA Controlled-Release Stent in Porcine Coronary Arteries
,”
Nat. Biotechnol.
,
18
(
11
), pp.
1181
1184
.10.1038/81176
15.
Hwang
,
C. W.
,
Wu
,
D.
, and
Edelman
,
E. R.
,
2001
, “
Physiological Transport Forces Govern Drug Distribution for Stent-Based Delivery
,”
Circulation
,
104
(
5
), pp.
600
605
.10.1161/hc3101.092214
16.
Zunino
,
P.
,
D'angelo
,
C.
,
Petrini
,
L.
,
Vergara
,
C.
,
Capelli
,
C.
, and
Migliavacca
,
F.
,
2009
, “
Numerical Simulation of Drug Eluting Coronary Stents: Mechanics, Fluid Dynamics and Drug Release
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3633
3644
.10.1016/j.cma.2008.07.019
17.
Kolachalama
,
V. B.
,
Tzafriri
,
A. R.
,
Arifin
,
D. Y.
, and
Edelman
,
E. R.
,
2009
, “
Luminal Flow Patterns Dictate Arterial Drug Deposition in Stent-Based Delivery
,”
J. Controlled Release
,
133
(
1
), pp.
24
30
.10.1016/j.jconrel.2008.09.075
18.
Balakrishnan
,
B.
,
Tzafriri
,
A. R.
,
Seifert
,
P.
,
Groothuis
,
A.
,
Rogers
,
C.
, and
Edelman
,
E. R.
,
2005
, “
Strut Position, Blood Flow, and Drug Deposition—Implications for Single and Overlapping Drug-Eluting Stents
,”
Circulation
,
111
(
22
), pp.
2958
2965
.10.1161/CIRCULATIONAHA.104.512475
19.
Balakrishnan
,
B.
,
Dooley
,
J. F.
,
Kopia
,
G.
, and
Edelman
,
E. R.
,
2007
, “
Intravascular Drug Release Kinetics Dictate Arterial Drug Deposition, Retention, and Distribution
,”
J. Controlled Release
,
123
(
2
), pp.
100
108
.10.1016/j.jconrel.2007.06.025
20.
Mongrain
,
R.
,
Faik
,
I.
,
Leask
,
R. L.
,
Rodes-Cabau
,
J.
,
Larose
,
E.
, and
Bertrand
,
O. F.
,
2007
, “
Effects of Diffusion Coefficients and Struts Apposition Using Numerical Simulations for Drug Eluting Coronary Stents
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
733
742
.10.1115/1.2768381
21.
Denny
,
W. J.
, and
Walsh
,
M. T.
,
2014
, “
Numerical Modelling of Mass Transport in an Arterial Wall With Anisotropic Transport Properties
,”
J. Biomech.
,
47
(
1
), pp.
168
177
.10.1016/j.jbiomech.2013.09.017
22.
Zhu
,
X.
,
Pack
,
D. W.
, and
Braatz
,
R. D.
,
2014
, “
Modelling Intravascular Delivery from Drug-Eluting Stents With Biodurable Coating: Investigation of Anisotropic Vascular Drug Diffusivity and Arterial Drug Distribution
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
3
), pp.
187
198
.10.1080/10255842.2012.672815
23.
Denny
,
W. J.
, and
Walsh
,
M. T.
,
2014
, “
Numerical Modelling of the Physical Factors That Affect Mass Transport in the Vasculature at Early Time Periods
,”
Med. Eng. Phys.
,
36
(
3
), pp.
308
317
.10.1016/j.medengphy.2013.11.013
24.
Sakharov
,
D. V.
,
Kalachev
,
L. V.
, and
Rijken
,
D. C.
,
2002
, “
Numerical Simulation of Local Pharmacokinetics of a Drug After Intravascular Delivery With an Eluting Stent
,”
J. Drug Targeting
,
10
(
6
), pp.
507
513
.10.1080/1061186021000038382
25.
Vairo
,
G.
,
Cioffi
,
M.
,
Cottone
,
R.
,
Dubini
,
G.
, and
Migliavacca
,
F.
,
2010
, “
Drug Release From Coronary Eluting Stents: A Multidomain Approach
,”
J. Biomech.
,
43
(
8
), pp.
1580
1589
.10.1016/j.jbiomech.2010.01.033
26.
Pontrelli
,
G.
, and
De Monte
,
F.
,
2010
, “
A Multi-Layer Porous Wall Model for Coronary Drug-Eluting Stents
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3629
3637
.10.1016/j.ijheatmasstransfer.2010.03.031
27.
Borghi
,
A.
,
Foa
,
E.
,
Balossino
,
R.
,
Migliavacca
,
F.
, and
Dubini
,
G.
,
2008
, “
Modelling Drug Elution From Stents: Effects of Reversible Binding in the Vascular Wall and Degradable Polymeric Matrix
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
4
), pp.
367
377
.10.1080/10255840801887555
28.
Ford Versypt
,
A. N.
,
Pack
,
D. W.
, and
Braatz
,
R. D.
,
2013
, “
Mathematical Modeling of Drug Delivery From Autocatalytically Degradable PLGA Microspheres—A Review
,”
J. Controlled Release
,
165
(
1
), pp.
29
37
.10.1016/j.jconrel.2012.10.015
29.
Fredenberg
,
S.
,
Wahlgren
,
M.
,
Reslow
,
M.
, and
Axelsson
,
A.
,
2011
, “
The Mechanisms of Drug Release in Poly(Lactic-Co-Glycolic Acid)-Based Drug Delivery Systems—A Review
,”
Int. J. Pharm.
,
415
(
1–2
), pp.
34
52
.10.1016/j.ijpharm.2011.05.049
30.
Sackett
,
C. K.
, and
Narasimhan
,
B.
,
2011
, “
Mathematical Modeling of Polymer Erosion: Consequences for Drug Delivery
,”
Int. J. Pharm.
,
418
(
1
), pp.
104
114
.10.1016/j.ijpharm.2010.11.048
31.
Prabhu
,
S.
, and
Hossainy
,
S.
,
2007
, “
Modeling of Degradation and Drug Release From a Biodegradable Stent Coating
,”
J. Biomed. Mater. Res., Part A
,
80A
(
3
), pp.
732
741
.10.1002/jbm.a.31053
32.
Zhu
,
X.
, and
Braatz
,
R. D.
, “
A Mechanistic Model for Drug Release in PLGA Biodegradable Stent Coatings Coupled With Polymer Degradation and Erosion
,” (in revision).
33.
Bailey
,
S. R.
,
2009
, “
DES Design: Theoretical Advantages and Disadvantages of Stent Strut Materials, Design, Thickness, and Surface Characteristics
,”
J. Interventional Cardiol.
,
22
(
Suppl s1
), pp.
S3
S17
.10.1111/j.1540-8183.2009.00449.x
34.
Gopferich
,
A.
,
1996
, “
Mechanisms of Polymer Degradation and Erosion
,”
Biomaterials
,
17
(
2
), pp.
103
114
.10.1016/0142-9612(96)85755-3
35.
Faisant
,
N.
,
Siepmann
,
J.
, and
Benoit
,
J. P.
,
2002
, “
PLGA-Based Microparticles: Elucidation of Mechanisms and a New, Simple Mathematical Model Quantifying Drug Release
,”
Eur. J. Pharm. Sci.
,
15
(
4
), pp.
355
366
.10.1016/S0928-0987(02)00023-4
36.
Raman
,
C.
,
Berkland
,
C.
,
Kim
,
K.
, and
Pack
,
D. W.
,
2005
, “
Modeling Small-Molecule Release From PLG Microspheres: Effects of Polymer Degradation and Nonuniform Drug Distribution
,”
J. Controlled Release
,
103
(
1
), pp.
149
158
.10.1016/j.jconrel.2004.11.012
37.
Charlier
,
A.
,
Leclerc
,
B.
, and
Couarraze
,
G.
,
2000
, “
Release of Mifepristone from Biodegradable Matrices: Experimental and Theoretical Evaluations
,”
Int. J. Pharm.
,
200
(
1
), pp.
115
120
.10.1016/S0378-5173(00)00356-2
38.
Wada
,
R.
,
Hyon
,
S. H.
, and
Ikada
,
Y.
,
1995
, “
Kinetics of Diffusion-Mediated Drug-Release Enhanced by Matrix Degradation
,”
J. Controlled Release
,
37
(
1–2
), pp.
151
160
.10.1016/0168-3659(95)00075-J
39.
Batycky
,
R. P.
,
Hanes
,
J.
,
Langer
,
R.
, and
Edwards
,
D. A.
,
1997
, “
A Theoretical Model of Erosion and Macromolecular Drug Release from Biodegrading Microspheres
,”
J. Pharm. Sci.
,
86
(
12
), pp.
1464
1477
.10.1021/js9604117
40.
Levin
,
A. D.
,
Vukmirovic
,
N.
,
Hwang
,
C. W.
, and
Edelman
,
E. R.
,
2004
, “
Specific Binding to Intracellular Proteins Determines Arterial Transport Properties for Rapamycin and Paclitaxel
,”
Proc. Natl. Acad. Sci. U. S. A.
,
101
(
25
), pp.
9463
9467
.10.1073/pnas.0400918101
41.
Kolachalama
,
V. B.
,
Pacetti
,
S. D.
,
Franses
,
J. W.
,
Stankus
,
J. J.
,
Zhao
,
H. Q.
,
Shazly
,
T.
,
Nikanorov
,
A.
,
Schwartz
,
L. B.
,
Tzafriri
,
A. R.
, and
Edelman
,
E. R.
,
2013
, “
Mechanisms of Tissue Uptake and Retention in Zotarolimus-Coated Balloon Therapy
,”
Circulation
,
127
(
20
), pp.
2047
2055
.10.1161/CIRCULATIONAHA.113.002051
42.
Lovich
,
M. A.
, and
Edelman
,
E. R.
,
1996
, “
Computational Simulations of Local Vascular Heparin Deposition and Distribution
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
271
(
5
), pp. H2014–H2024.
43.
Castellot
,
J. J.
,
Wong
,
K.
,
Herman
,
B.
,
Hoover
,
R. L.
,
Albertini
,
D. F.
,
Wright
,
T. C.
,
Caleb
,
B. L.
, and
Karnovsky
,
M. J.
,
1985
, “
Binding and Internalization of Heparin by Vascular Smooth Muscle Cells
,”
J. Cell. Physiol.
,
124
(
1
), pp.
13
20
.10.1002/jcp.1041240104
44.
Deux
,
J.-F.
,
Meddahi-Pellé
,
A.
,
Le Blanche
,
A. F.
,
Feldman
,
L. J.
,
Colliec-Jouault
,
S.
,
Brée
,
F.
,
Boudghène
,
F.
,
Michel
,
J.-B.
, and
Letourneur
,
D.
,
2002
, “
Low Molecular Weight Fucoidan Prevents Neointimal Hyperplasia in Rabbit Iliac Artery In-Stent Restenosis Model
,”
Arterioscler., Thromb., Vasc. Biol.
,
22
(
10
), pp.
1604
1609
.10.1161/01.ATV.0000032034.91020.0A
45.
Wang
,
D.
, and
Tarbell
,
J.
,
1995
, “
Modeling Interstitial Flow in an Artery Wall Allows Estimation of Wall Shear Stress on Smooth Muscle Cells
,”
ASMEJ. Biomech. Eng.
,
117
(
3
), pp.
358
363
.10.1115/1.2794192
46.
Hwang
,
C. W.
, and
Edelman
,
E. R.
,
2002
, “
Arterial Ultrastructure Influences Transport of Locally Delivered Drugs
,”
Circ. Res.
,
90
(
7
), pp.
826
832
.10.1161/01.RES.0000016672.26000.9E
47.
Cussler
,
E. L.
,
1997
,
Diffusion: Mass Transfer in Fluid Systems
,
Cambridge University
,
Cambridge, UK
.
48.
Tonar
,
Z.
,
Kochová
,
P.
, and
Janáček
,
J.
,
2008
, “
Orientation, Anisotropy, Clustering, and Volume Fraction of Smooth Muscle Cells Within the Wall of Porcine Abdominal Aorta
,”
Appl. Comput. Mech.
,
2
(
1
), pp.
145
156
.
49.
Rhodin
,
J. A.
,
2011
, “
Architecture of the Vessel Wall
,”
Handbook of Physiology: A Critical, Comprehensive Presentation of Physiological Knowledge and Concepts. Section 2: The Cardiovascular System, Volume II. Vascular Smooth Muscle
, D. F. Bohr, A. D. Somlyo, and H. V. Sparks, Jr.(eds.). American Physiological Society, Bethesda, MD, pp. 1–31.
50.
Roby
,
T.
,
Olsen
,
S.
, and
Nagatomi
,
J.
,
2008
, “
Effect of Sustained Tension on Bladder Smooth Muscle Cells in Three-Dimensional Culture
,”
Ann. Biomed. Eng.
,
36
(
10
), pp.
1744
1751
.10.1007/s10439-008-9545-5
51.
Zhang
,
F. M.
,
Fath
,
M.
,
Marks
,
R.
, and
Linhardt
,
R. J.
,
2002
, “
A Highly Stable Covalent Conjugated Heparin Biochip for Heparin-Protein Interaction Studies
,”
Anal. Biochem.
,
304
(
2
), pp.
271
273
.10.1006/abio.2002.5617
52.
Ferron
,
G. M.
,
Conway
,
W. D.
, and
Jusko
,
W. J.
,
1997
, “
Lipophilic Benzamide and Anilide Derivatives as High-Performance Liquid Chromatography Internal Standards: Application to Sirolimus (Rapamycin) Determination
,”
J. Chromatogr. B: Biomed. Sci. Appl.
,
703
(
1–2
), pp.
243
251
.10.1016/S0378-4347(97)00415-5
53.
Fogler
,
H. S.
,
1999
,
Elements of Chemical Reaction Engineering
,
Prentice-Hall International
,
London
.
54.
Takebayashi
,
H.
,
Mintz
,
G. S.
,
Carlier
,
S. G.
,
Kobayashi
,
Y.
,
Fujii
,
K.
,
Yasuda
,
T.
,
Costa
,
R. A.
,
Moussa
,
I.
,
Dangas
,
G. D.
,
Mehran
,
R.
,
Lansky
,
A. J.
,
Kreps
,
E.
,
Collins
,
M. B.
,
Colombo
,
A.
,
Stone
,
G. W.
,
Leon
,
M. B.
, and
Moses
,
J. W.
,
2004
, “
Nonuniform Strut Distribution Correlates With More Neointimal Hyperplasia After Sirolimus-Eluting Stent Implantation
,”
Circulation
,
110
(
22
), pp.
3430
3434
.10.1161/01.CIR.0000148371.53174.05
55.
Truskey
,
G. A.
,
Yuan
,
F.
, and
Katz
,
D. F.
,
2004
,
Transport Phenomena in Biological Systems
,
Pearson/Prentice Hall
,
Upper Saddle River, NJ
.
56.
Wessely
,
R.
,
Schomig
,
A.
, and
Kastrati
,
A.
,
2006
, “
Sirolimus and Paclitaxel on Polymer-Based Drug-Eluting Stents—Similar but Different
,”
J. Am. Coll. Cardiol.
,
47
(
4
), pp.
708
714
.10.1016/j.jacc.2005.09.047
57.
Balakrishnan
,
B.
,
Dooley
,
J.
,
Kopia
,
G.
, and
Edelman
,
E. R.
,
2008
, “
Thrombus Causes Fluctuations in Arterial Drug Delivery From Intravascular Stents
,”
J. Controlled Release
,
131
(
3
), pp.
173
180
.10.1016/j.jconrel.2008.07.027
You do not currently have access to this content.