The body has approximately 434 muscles, which makes up 40–50% of the body by weight. Muscle is hierarchical in nature and organized in progressively larger units encased in connective tissue. Like many soft tissues, muscle has nonlinear visco-elastic behavior, but muscle also has unique characteristics of excitability and contractibility. Mechanical testing of muscle has been done for crash models, pressure sore models, back pain, and other disease models. The majority of previous biomechanical studies on muscle have been associated with tensile properties in the longitudinal direction as this is muscle's primary mode of operation under normal physiological conditions. Injury conditions, particularly high rate injuries, can expose muscle to multiple stress states. Compressive stresses can lead to tissue damage, which may not be reversible. In this study, we evaluate the structure–property relationships of porcine muscle tissue under compression, in both the transverse and longitudinal orientations at 0.1 s−1, 0.01 s−1, or 0.001 s−1. Our results show an initial toe region followed by an increase in stress for muscle in both the longitudinal and transverse directions tested to 50% strain. Strain rate dependency was also observed with the higher strain rates showing significantly more stress at 50% strain. Muscle in the transverse orientation was significantly stiffer than in the longitudinal orientation indicating anisotropy. The mean area of fibers in the longitudinal orientation shows an increasing mean fiber area and a decreasing mean fiber area in the transverse orientation. Data obtained in this study can help provide insight on how muscle injuries are caused, ranging from low energy strains to high rate blast events, and can also be used in developing computational injury models.

References

1.
Schuster
,
P. J.
,
Chou
,
C. C.
,
Prasad
,
P.
, and
Jayaraman
,
G.
,
2000
, “
Development and Validation of a Pedestrian Lower Limb Non-Linear 3-D Finite Element Model
,”
Stapp Car Crash J.
,
44
(
1
), pp.
315
334
.
2.
Van der Horst
,
M. J.
,
Van der Simms
,
C. K.
,
Van Maasdam
,
R.
, and
Leerdam
,
P. J. C.
,
2005
, “
Occupant Lower Leg Injury Assessment in Landmine Detonations Under a Vehicle
,”
IUTAM Proc. Impact Biomech.
,
124
, pp.
41
49
.10.1007/1-4020-3796-1_5
3.
Lemos
,
R. R.
,
Epstein
,
M.
,
Herzog
,
W.
, and
Wyvill
,
B.
,
2004
, “
A Framework for Structured Modeling of Skeletal Muscle
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
6
), pp.
305
317
.10.1080/10255840412331317398
4.
Van Loocke
,
M.
,
Lyons
,
C. G.
, and
Simms
,
C. K.
,
2006
, “
A Validated Model of Passive Muscle in Compression
,”
J. Biomech.
,
39
(
16
), pp.
2999
3009
.10.1016/j.jbiomech.2005.10.016
5.
Linder-Ganz
,
E.
, and
Gefen
,
A.
,
2004
, “
Mechanical Compression-Induced Pressure Sores in Rat Hindlimb: Muscle Stiffness, Histology, and Computational Models
,”
J. Appl. Physiol.
,
96
(
6
), pp.
2034
2049
.10.1152/japplphysiol.00888.2003
6.
Palevski
,
A.
,
Glaich
,
I.
,
Portnoy
,
S.
,
Linder-Ganz
,
E.
, and
Gefen
,
A.
,
2006
, “
Stress Relaxation of Porcine Gluteus Muscle Subjected to Sudden Transverse Deformation as Related to Pressure Sore Modeling
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
782
787
.10.1115/1.2264395
7.
Basford
,
J. R.
,
Jenkyn
,
T. R.
,
An
,
K.-N.
,
Ehman
,
R. L.
,
Heers
,
G.
, and
Kaufman
,
K. R.
,
2002
, “
Evaluation of Healthy and Diseased Muscle With Magnetic Resonance Elastography
,”
Arch. Phys. Med. Rehabil.
,
83
(
11
), pp.
1530
1536
.10.1053/apmr.2002.35472
8.
Lin
,
R.
,
Chang
,
G.
, and
Chang
,
L.
,
1999
, “
Biomechanical Properties of Muscle–Tendon Unit Under High-Speed Passive Stretch
,”
Clin. Biomech.
(Bristol, Avon),
14
(
6
), pp.
412
417
.10.1016/S0268-0033(98)00108-9
9.
Crawford
,
S. K.
,
Haas
,
C.
,
Butterfield
,
T. A.
,
Wang
,
Q.
,
Zhang
,
X.
,
Zhao
,
Y.
, and
Best
,
T. M.
,
2014
, “
Effects of Immediate vs. Delayed Massage-Like Loading on Skeletal Muscle Viscoelastic Properties Following Eccentric Exercise
,”
Clin. Biomech.
,
29
(
6
), pp.
671
678
.10.1016/j.clinbiomech.2014.04.007
10.
Best
,
T. M.
,
McElhaney
,
J.
,
Garrett
,
W. E.
, and
Myers
,
B. S.
,
1994
, “
Characterization of the Passive Responses of Live Skeletal Muscle Using the Quasi-Linear Theory of Viscoelasticity
,”
J. Biomech.
,
27
(
4
), pp.
413
419
.10.1016/0021-9290(94)90017-5
11.
Davis
,
J.
,
Kaufman
,
K. R.
, and
Lieber
,
R. L.
,
2003
, “
Correlation Between Active and Passive Isometric Force and Intramuscular Pressure in the Isolated Rabbit Tibialis Anterior Muscle
,”
J. Biomech.
,
36
(
4
), pp.
505
512
.10.1016/S0021-9290(02)00430-X
12.
Grover
,
J. P.
,
Corr
,
D. T.
,
Toumi
,
H.
,
Manthei
,
D. M.
,
Oza
,
A. L.
,
Vanderby
,
R.
, and
Best
,
T. M.
,
2007
, “
The Effect of Stretch Rate and Activation State on Skeletal Muscle Force in the Anatomical Range
,”
Clin. Biomech.
(Bristol, Avon),
22
(
3
), pp.
360
368
.10.1016/j.clinbiomech.2006.10.009
13.
Sun
,
J. S.
,
Tsuang
,
Y. H.
,
Liu
,
T. K.
,
Hang
,
Y. S.
,
Cheng
,
C. K.
, and
Lee
,
W. W. L.
,
1995
, “
Viscoplasticity of Rabbit Skeletal Muscle Under Dynamic Cyclic Loading
,”
Clin. Biomech.
(Bristol, Avon),
10
(
5
), pp.
258
262
.10.1016/0268-0033(95)99803-A
14.
Taniguchi
,
T.
,
Yamamoto
,
S.
,
Hayakawa
,
A.
,
Tanaka
,
E.
,
Kimpara
,
H.
, and
Miki
,
K.
,
2003
, “
Extension Rate and Muscle-Tonus Dependence of the Failure Properties of Rabbit Tibialis Anterior Muscle
,”
Abstracts for the Summer Bioengineering Conference
,
Sonesta Beach Resort, Key Biscayne, FL
, June 25–29, pp.
1219
1220
.
15.
Aimedieu
,
P.
,
Mitton
,
D.
,
Faure
,
J. P.
,
Denninger
,
L.
, and
Lavaste
,
F.
,
2003
, “
Dynamic Stiffness and Damping of Porcine Muscle Specimens
,”
Med. Eng. Phys.
,
25
(
9
), pp.
795
799
.10.1016/S1350-4533(03)00103-6
16.
Anderson
,
J.
,
Li
,
Z.
, and
Goubel
,
F.
,
2001
, “
Passive Stiffness Is Increased in Soleus Muscle of Desmin Knockout Mouse
,”
Muscle Nerve
,
24
(
8
), pp.
1090
1092
.10.1002/mus.1115
17.
Gosselin
,
L. E.
,
Adams
,
C.
,
Cotter
,
T. A.
,
McCormick
,
R. J.
, and
Thomas
,
D. P.
,
1998
, “
Effect of Exercise Training on Passive Stiffness in Locomotor Skeletal Muscle: Role of Extracellular Matrix
,”
J. Appl. Physiol.
,
85
(
3
), pp.
1011
1016
.
18.
Morrow
,
D. A.
,
Haut Donahue
,
T. L.
,
Odegard
,
G. M.
, and
Kaufman
,
K. R.
,
2010
, “
Transversely Isotropic Tensile Material Properties of Skeletal Muscle Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
1
), pp.
124
129
.10.1016/j.jmbbm.2009.03.004
19.
Anderson
,
J.
,
Joumaa
,
V.
,
Stevens
,
L.
,
Neagoe
,
C.
,
Li
,
Z.
,
Mounier
,
Y.
,
Linke
,
W. A.
, and
Goubel
,
F.
,
2002
, “
Passive Stiffness Changes in Soleus Muscles From Desmin Knockout Mice Are Not Due to Titin Modifications
,”
Pflügers Arch.: Eur. J. Physiol.
,
444
(
6
), pp.
771
776
.10.1007/s00424-002-0875-0
20.
Christensen
,
M.
,
Young
,
R. D.
,
Lawson
,
M. A.
,
Larsen
,
L. M.
, and
Purslow
,
P. P.
,
2004
, “
Effect of Added μ-Calpain and Post-Mortem Storage on the Mechanical Properties of Bovine Single Muscle Fibres Extended to Fracture
,”
Meat Sci.
,
66
(
1
), pp.
105
112
.10.1016/S0309-1740(03)00025-1
21.
Lieber
,
R. L.
,
2010
,
Skeletal Muscle Structure, Function, and Plasticity
,
Lippincott Williams and Wilkins
,
Philadelphia, PA
.
22.
Mathur
,
A. B.
,
Collinsworth
,
A. M.
,
Reichert
,
W. M.
,
Kraus
,
W. E.
, and
Truskey
,
G. A.
,
2001
, “
Endothelial, Cardiac Muscle and Skeletal Muscle Exhibit Different Viscous and Elastic Properties as Determined by Atomic Force Microscopy
,”
J. Biomech.
,
34
(
12
), pp.
1545
1553
.10.1016/S0021-9290(01)00149-X
23.
Gefen
,
A.
,
Gefen
,
N.
,
Linder-Ganz
,
E.
, and
Margulies
,
S. S.
,
2005
, “
In Vivo Muscle Stiffening Under Bone Compression Promotes Deep Pressure Sores
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
512
524
.10.1115/1.1894386
24.
Gennisson
,
J.-L.
,
Catheline
,
S.
,
Chaffaï
,
S.
, and
Fink
,
M.
,
2003
, “
Transient Elastography in Anisotropic Medium: Application to the Measurement of Slow and Fast Shear Wave Speeds in Muscles
,”
J. Acoust. Soc. Am.
,
114
(
1
), pp.
536
541
.10.1121/1.1579008
25.
Hawkins
,
D.
, and
Bey
,
M.
,
1997
, “
Muscle and Tendon Force-Length Properties and Their Interactions In Vivo
,”
J. Biomech.
,
30
(
1
), pp.
63
70
.10.1016/S0021-9290(96)00094-2
26.
Van Ee
,
C. A.
,
Chasse
,
A. L.
, and
Myers
,
B. S.
,
2000
, “
Quantifying Skeletal Muscle Properties in Cadaveric Test Specimens: Effects of Mechanical Loading, Postmortem Time, and Freezer Storage
,”
ASME J. Biomech. Eng.
,
122
(
1
), pp.
9
14
.10.1115/1.429621
27.
Dresner
,
M. A.
,
Rose
,
G. H.
,
Rossman
,
P. J.
,
Muthupillai
,
R.
,
Manduca
,
A.
, and
Ehman
,
R. L.
,
2001
, “
Magnetic Resonance Elastography of Skeletal Muscle
,”
J. Magn. Reson. Imaging
,
13
(
2
), pp.
269
276
.10.1002/1522-2586(200102)13:2<269::AID-JMRI1039>3.0.CO;2-1
28.
Uffmann
,
K.
,
Maderwald
,
S.
,
Ajaj
,
W.
,
Galban
,
C. G.
,
Mateiescu
,
S.
,
Quick
,
H. H.
, and
Ladd
,
M. E.
,
2004
, “
in vivo Elasticity Measurements of Extremity Skeletal Muscle With MR Elastography
,”
NMR Biomed.
,
17
(
4
), pp.
181
190
.10.1002/nbm.887
29.
Gareis
,
H.
,
Solomonow
,
M.
,
Baratta
,
R.
,
Best
,
R.
, and
D'Ambrosia
,
R.
,
1992
, “
The Isometric Length-Force Models of Nine Different Skeletal Muscles
,”
J. Biomech.
,
25
(
8
), pp.
903
916
.10.1016/0021-9290(92)90230-X
30.
Muhl
,
Z. F.
,
1982
, “
Active Length-Tension Relation and the Effect of Muscle Pinnation on Fiber Lengthening
,”
J. Morphol.
,
173
(
3
), pp.
285
292
.10.1002/jmor.1051730305
31.
Myers
,
B. S.
,
Woolley
,
C. T.
,
Slotter
,
T. L.
,
Garrett
,
W. E.
, and
Best
,
T. M.
,
1998
, “
The Influence of Strain Rate on the Passive and Stimulated Engineering Stress—Large Strain Behavior of the Rabbit Tibialis Anterior Muscle
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
126
132
.10.1115/1.2834292
32.
Bosboom
,
E. M.
,
Hesselink
,
M. K.
,
Oomens
,
C. W.
,
Bouten
,
C. V.
,
Drost
,
M. R.
, and
Baaijens
,
F. P.
,
2001
, “
Passive Transverse Mechanical Properties of Skeletal Muscle Under In Vivo Compression
,”
J. Biomech.
,
34
(
10
), pp.
1365
1368
.10.1016/S0021-9290(01)00083-5
33.
Van Loocke
,
M.
,
Lyons
,
C. G.
, and
Simms
,
C. K.
,
2008
, “
Viscoelastic Properties of Passive Skeletal Muscle in Compression: Stress-Relaxation Behaviour and Constitutive Modelling
,”
J. Biomech.
,
41
(
7
), pp.
1555
1566
.10.1016/j.jbiomech.2008.02.007
34.
Van Loocke
,
M.
,
Simms
,
C. K.
, and
Lyons
,
C. G.
,
2009
, “
Viscoelastic Properties of Passive Skeletal Muscle in Compression-Cyclic Behaviour
,”
J. Biomech.
,
42
(
8
), pp.
1038
1048
.10.1016/j.jbiomech.2009.02.022
35.
Nie
,
X.
,
Cheng
,
J.-I.
,
Chen
,
W. W.
, and
Weerasooriya
,
T.
,
2011
, “
Dynamic Tensile Response of Porcine Muscle
,”
ASME J. Appl. Mech.
,
78
(
2
), p.
021009
.10.1115/1.4002580
36.
Simon
,
B. R.
,
1992
, “
Multiphase Poroelastic Finite Element Models for Soft Tissue Structures
,”
ASME Appl. Mech. Rev.
,
45
(
6
), pp.
191
218
.10.1115/1.3121397
37.
Spilker
,
R. L.
,
Suh
,
J. K.
, and
Mow
,
V. C.
,
1992
, “
A Finite Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular Cartilage
,”
ASME J. Biomech. Eng.
,
114
(
2
), pp.
191
201
.10.1115/1.2891371
38.
Yang
,
M.
, and
Taber
,
L. A.
,
1991
, “
The Possible Role of Poroelasticity in the Apparent Viscoelastic Behavior of Passive Cardiac Muscle
,”
J. Biomech.
,
24
(
7
), pp.
587
597
.10.1016/0021-9290(91)90291-T
39.
Yang
,
M.
, and
Taber
,
L. A.
,
1991
, “
The Possible Role of Poroelasticity in the Apparent Viscoelastic Behavior of Passive Cardiac Muscle
,”
J. Biomech.
,
24
(
7
), pp.
587
597
.10.1016/0021-9290(91)90291-T
You do not currently have access to this content.