Bileaflet mechanical heart valves (BMHVs) are among the most popular prostheses to replace defective native valves. However, complex flow phenomena caused by the prosthesis are thought to induce serious thromboembolic complications. This study aims at employing a novel multiscale numerical method that models realistic sized suspended platelets for assessing blood damage potential in flow through BMHVs. A previously validated lattice-Boltzmann method (LBM) is used to simulate pulsatile flow through a 23 mm St. Jude Medical (SJM) Regent valve in the aortic position at very high spatiotemporal resolution with the presence of thousands of suspended platelets. Platelet damage is modeled for both the systolic and diastolic phases of the cardiac cycle. No platelets exceed activation thresholds for any of the simulations. Platelet damage is determined to be particularly high for suspended elements trapped in recirculation zones, which suggests a shift of focus in blood damage studies away from instantaneous flow fields and toward high flow mixing regions. In the diastolic phase, leakage flow through the b-datum gap is shown to cause highest damage to platelets. This multiscale numerical method may be used as a generic solver for evaluating blood damage in other cardiovascular flows and devices.

References

1.
Kulik
,
A.
,
Bédard
,
P.
,
Lam
,
B. K.
,
Rubens
,
F. D.
,
Hendry
,
P. J.
,
Masters
,
R. G.
,
Mesana
,
T. G.
, and
Ruel
,
M.
,
2006
, “
Mechanical Versus Bioprosthetic Valve Replacement in Middle-Aged Patients
,”
Eur. J. Cardiothorac. Surg.
,
30
(
3
), pp.
485
491
.10.1016/j.ejcts.2006.06.013
2.
Black
,
M. M.
, and
Drury
,
P. J.
,
1994
, “
Mechanical and Other Problems of Artificial Valves
,”
Curr. Topic Pathol.
,
86
, pp.
127
159
.10.1007/978-3-642-76846-0
3.
Yoganathan
,
A.
,
Leo
,
H.
,
Travis
,
B.
, and
Teoh
,
S.
,
2003
, “
Heart Valve Bioengineering
,”
Encyclopedia of Comprehensive Structural Integrity
,
Elsevier Science
,
New York
, pp.
795
796
.
4.
Bonow
,
R. O.
,
Carabello
,
B. A.
,
Chatterjee
,
K.
,
de Leon
,
A. C.
, Jr.
,
Faxon
,
D. P.
,
Freed
,
M. D.
,
Gaasch
,
W. H.
,
Lytle
,
B. W.
,
Nishimura
,
R. A.
,
O'Gara
,
P. T.
,
O'Rourke
,
R. A.
,
Otto
,
C. M.
,
Shah
,
P. M.
,
Shanewise
,
J. S.
, and
American College of Cardiology/American Heart Association Task Force on Practice Guidelines
,
2008
, “
Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons
,”
Circulation
,
118
(15), pp.
e523
e661
.10.1161/CIRCULATIONAHA.108.190748
5.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves
,”
Int. J. Artif. Organs
,
13
(
5
), pp.
300
306
.
6.
Ellis
,
J.
, and
Yoganathan
,
A.
,
2000
, “
A Comparison of the Hinge and Near-Hinge Flow Fields of the St. Jude Medical Hemo-Dynamic Plus and Regent Bileaflet Mechanical Heart Valves
,”
J. Thorac. Cardiovasc. Surg.
,
119
(1)
, pp.
83
93
.10.1016/S0022-5223(00)70221-2
7.
Ellis
,
J.
,
Healy
,
T. M.
,
Fontaine
,
A. A.
,
Saxena
,
R.
, and
Yoganathan
,
A.
,
1996
, “
Velocity Measurements and Flow Patterns Within the Hinge Region of a Medtronic Parallel Bileaflet Mechanical Heart Valve With Clear Housing
,”
J. Heart Valve Dis.
,
5
(
6
), pp.
591
599
.
8.
Lu
,
P. C.
,
Lai
,
H. C.
, and
Liu
,
J. S.
,
2001
, “
A Re-evaluation and Discussion on the Threshold Limit for Hemolysis in a Turbulent Shear Flow
,”
J. Biomech.
,
34
(
10
), pp.
1361
1364
.10.1016/S0021-9290(01)00084-7
9.
Barbetseas
,
J.
,
Nagueh
,
S. F.
,
Pitsavos
,
C.
,
Toutouzas
,
P. K.
,
Quiñones
,
M. A.
, and
Zoghbi
,
W. A.
,
1998
, “
Differentiating Thrombus From Pannus Formation in Obstructed Mechanical Prosthetic Valves: An Evaluation of Clinical, Transthoracic and Transesophageal Echocardiographic Parameters
,”
J. Am. Coll. Cardiol.
,
32
(
5
), pp.
1410
1417
.10.1016/S0735-1097(98)00385-4
10.
Deviri
,
E.
,
Sareli
,
P.
,
Wisenbaugh
,
T.
, and
Cronje
,
S. L.
,
1991
, “
Obstruction of Mechanical Heart Valve Prostheses: Clinical Aspects and Surgical Management
,”
J. Am. Coll. Cardiol.
,
17
(
3
), pp.
646
650
.10.1016/S0735-1097(10)80178-0
11.
Hylen
,
J. C.
,
1972
, “
Mechanical Malfunction and Thrombosis of Prosthetic Heart Valves
,”
Am. J. Cardiol.
,
30
(
4
), pp.
396
404
.10.1016/0002-9149(72)90571-1
12.
Herbertson
,
L. H.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2011
, “
Near Valve Flows and Potential Blood Damage During Closure of a Bileaflet Mechanical Heart Valve
,”
ASME J. Biomech. Eng.
,
133
(
9
), p.
094507
.10.1115/1.4005167
13.
Lim
,
W. L.
,
Chew
,
Y. T.
,
Chew
,
T. C.
, and
Low
,
H. T.
,
1994
, “
Particle Image Velocimetry in the Investigation of Flow Past Artificial Heart Valves
,”
Ann. Biomed. Eng.
,
22
(
3
), pp.
307
318
.10.1007/BF02368237
14.
Lim
,
W. L.
,
Chew
,
Y. T.
,
Chew
,
T. C.
, and
Low
,
H. T.
,
1998
, “
Steady Flow Dynamics of Prosthetic Aortic Heart Valves: A Comparative Evaluation With PIV Techniques
,”
J. Biomech.
,
31
(
5
), pp.
411
421
.10.1016/S0021-9290(98)00026-8
15.
Lim
,
W. L.
,
Chew
,
Y. T.
,
Chew
,
T. C.
, and
Low
,
H. T.
,
2001
, “
Pulsatile Flow Studies of a Porcine Bioprosthetic Aortic Valve In Vitro: PIV Measurements and Shear-Induced Blood Damage
,”
J. Biomech.
,
34
(
11
), pp.
1417
1427
.10.1016/S0021-9290(01)00132-4
16.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
,
2003
, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
,
27
(
9
), pp.
840
846
.10.1046/j.1525-1594.2003.07194.x
17.
Dasi
,
L. P.
,
Murphy
,
D. W.
,
Glezer
,
A.
, and
Yoganathan
,
A. P.
,
2008
, “
Passive Flow Control of Bileaflet Mechanical Heart Valve Leakage Flow
,”
J. Biomech.
,
41
(
6
), pp.
1166
1173
.10.1016/j.jbiomech.2008.01.024
18.
Fallon
,
A. M.
,
Dasi
,
L. P.
,
Marzec
,
U. M.
,
Hanson
,
S. R.
, and
Yoganathan
,
A. P.
,
2008
, “
Procoagulant Properties of Flow Fields in Stenotic and Expansive Orifices
,”
Ann. Biomed. Eng.
,
36
(
1
), pp.
1
13
.10.1007/s10439-007-9398-3
19.
Murphy
,
D. W.
,
Dasi
,
L. P.
,
Vukasinovic
,
J.
,
Glezer
,
A.
, and
Yoganathan
,
A. P.
,
2010
, “
Reduction of Procoagulant Potential of b-Datum Leakage Jet Flow in Bileaflet Mechanical Heart Valves via Application of Vortex Generator Arrays
,”
ASME J. Biomech. Eng.
,
132
(
7
), p.
071011
.10.1115/1.4001260
20.
Dasi
,
L. P.
,
Ge
,
L.
,
Simon
,
H. A.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A.
,
2007
, “
Vorticity Dynamics of a Bileaflet Mechanical Heart Valve in an Axisymmetric Aorta
,”
Phys. Fluids
,
19
, p.
067105
.10.1063/1.2743261
21.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2008
, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
276
297
.10.1007/s10439-007-9411-x
22.
Shahriari
,
S.
,
Maleki
,
H.
,
Hassan
,
I.
, and
Kadem
,
L.
,
2012
, “
Evaluation of Shear Stress Accumulation on Blood Components in Normal and Dysfunctional Bileaflet Mechanical Heart Valves Using Smoothed Particle Hydrodynamics
,”
J. Biomech.
,
45
(
15
), pp.
2637
2644
.10.1016/j.jbiomech.2012.08.009
23.
De Tullio
,
M. D.
,
Cristallo
,
A.
,
Balaras
,
E.
, and
Verzicco
,
R.
,
2010
, “
Direct Numerical Simulation of the Pulsatile Flow Through an Aortic Bileaflet Mechanical Heart Valve
,”
J. Fluid Mech.
,
622
, pp.
259
290
.10.1017/S0022112008005156
24.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2008
, “
Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction With Complex 3D Rigid Bodies
,”
J. Comput. Phys.
,
227
(
16
), pp.
7587
7620
.10.1016/j.jcp.2008.04.028
25.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2010
, “
The Effect of Implantation Orientation of a Bileaflet Mechanical Heart Valve on Kinematics and Hemodynamics in an Anatomic Aorta
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111005
.10.1115/1.4002491
26.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.10.1111/j.1525-1594.2007.00446.x
27.
Alemu
,
Y.
,
Girdhar
,
G.
,
Xenos
,
M.
,
Sheriff
,
J.
,
Jesty
,
J.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2010
, “
Design Optimization of a Mechanical Heart Valve for Reducing Valve Thrombogenicity—A Case Study With ATS Valve
,”
ASAIO
,
56
(
5
), pp.
389
396
.10.1097/MAT.0b013e3181e65bf9
28.
Dumont
,
K.
,
Vierendeels
,
J.
,
Kaminsky
,
R.
,
Van Nooten
,
G.
,
Verdonck
,
P.
, and
Bluestein
,
D.
,
2007
, “
Comparison of the Hemodynamic and Thrombogenic Performance of Two Bileaflet Mechanical Heart Valves Using a CFD/FSI Model
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
558
565
.10.1115/1.2746378
29.
Simon
,
H. A.
,
Ge
,
L.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A.
,
2010
, “
Numerical Investigation of the Performance of Three Hinge Designs of Bileaflet Mechanical Heart Valves
,”
Ann. Biomed. Eng.
,
38
(
11
), pp.
3295
3310
.10.1007/s10439-010-0086-3
30.
Wu
,
J.
,
Yun
,
B. M.
,
Fallon
,
A. M.
,
Hanson
,
S. R.
,
Aidun
,
C. K.
, and
Yoganathan
,
A.
,
2011
, “
Numerical Investigation of the Effects of Channel Geometry on Platelet Activation and Blood Damage
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
897
910
.10.1007/s10439-010-0184-2
31.
Yun
,
B. M.
,
Wu
,
J.
,
Simon
,
H. A.
,
Arjunon
,
S.
,
Sotiropoulos
,
F.
,
Aidun
,
C. K.
, and
Yoganathan
,
A.
,
2012
, “
A Numerical Investigation of Blood Damage in the Hinge Area of Aortic Bileaflet Mechanical Heart Valves During the Leakage Phase
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1468
1485
.10.1007/s10439-011-0502-3
32.
Yun
,
B. M.
,
Dasi
,
L. P.
,
Aidun
,
C. K.
, and
Yoganathan
,
A. P.
,
2014
, “
Computational Modelling of Flow Through Prosthetic Heart Valves Using the Entropic Lattice-Boltzmann Method
,”
J. Fluid Mech.
,
743
, pp.
170
201
.10.1017/jfm.2014.54
33.
Yun
,
B. M.
,
Dasi
,
L. P.
,
Aidun
,
C. K.
, and
Yoganathan
,
A. P.
,
2014
, “
Highly Resolved Pulsatile Flows Through Prosthetic Heart Valves Using the Entropic Lattice-Boltzmann Method
,”
J. Fluid Mech.
,
754
, pp.
122
160
.10.1017/jfm.2014.393
34.
Aidun
,
C. K.
, and
Lu
,
Y.
,
1995
, “
Lattice Boltzmann Simulation of Solid Particles Suspended in Fluid
,”
J. Stat. Phys.
,
81
(
1
), pp.
49
61
.10.1007/BF02179967
35.
Aidun
,
C. K.
, and
Clausen
,
J. R.
,
2010
, “
Lattice Boltzmann Method for Complex Flows
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
439
472
.10.1146/annurev-fluid-121108-145519
36.
Aidun
,
C. K.
,
Lu
,
Y.
, and
Ding
,
E.
,
1998
, “
Direct Analysis of Particulate Suspensions With Inertia Using the Discrete Boltzmann Equation
,”
J. Fluid Mech.
,
373
, pp.
287
311
.10.1017/S0022112098002493
37.
Ding
,
E. J.
, and
Aidun
,
C. K.
,
2000
, “
The Dynamics and Scaling Law for Particles Suspended in Shear Flow With Inertia
,”
J. Fluid Mech.
,
423
, pp.
317
344
.10.1017/S0022112000001932
38.
Ding
,
E. J.
, and
Aidun
,
C. K.
,
2003
, “
Extension of the Lattice-Boltzmann Method for Direct Simulation of Suspended Particles Near Contact
,”
J. Stat. Phys.
,
112
(
3
), pp.
685
708
.10.1023/A:1023880126272
39.
Wu
,
J.
, and
Aidun
,
C. K.
,
2010
, “
Simulating 3D Deformable Particle Suspensions Using Lattice Boltzmann Method With Discrete External Boundary Force
,”
Int. J. Numer. Method Fluids
,
62
(
7
), pp.
765
783
.10.1002/fld.2043
40.
Junk
,
M.
, and
Yong
,
W. A.
,
2003
, “
Rigorous Navier–Stokes Limit of the Lattice Boltzmann Equation
,”
Asymptotic Anal.
,
35
(
1
), pp.
165
–185.
41.
Junk
,
M.
, and
Yang
,
Z.
,
2009
, “
Convergence of Lattice Boltzmann Methods for Navier–Stokes Flows in Periodic and Bounded Domains
,”
Numerische Math.
,
112
(
1
), pp.
65
87
.10.1007/s00211-008-0196-0
42.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numer.
,
11
, pp.
479
517
.10.1017/S0962492902000077
43.
Wu
,
J.
, and
Aidun
,
C. K.
,
2010
, “
A Method for Direct Simulation of Flexible Fiber Suspensions Using Lattice-Boltzmann Equation With External Boundary Force
,”
Int. J. Multiphase Flow
,
36
(3)
, pp.
202
209
.10.1016/j.ijmultiphaseflow.2009.11.003
44.
Keating
,
B.
,
Vahala
,
G.
,
Yepez
,
J.
,
Soe
,
M.
, and
Vahala
,
L.
,
2007
, “
Entropic Lattice Boltzmann Representations Required to Recover Navier–Stokes Flows
,”
Phys. Rev. E
,
75
(
3
), p.
036712
.10.1103/PhysRevE.75.036712
45.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
,
1997
, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
344
356
.10.1007/BF02648048
46.
Jeffery
,
G. B.
,
1922
, “
The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid
,”
Proc. R. Soc. Lond. Ser. A
,
102
, pp.
161
179
.10.1098/rspa.1922.0078
47.
Reasor
,
D. A.
, Jr
,
2011
, “
Numerical Simulation of Cellular Blood Flow
,”
Mechanical Engineering
,
Georgia Institute of Technology
,
Atlanta, GA
, p.
164
.
48.
Fox
,
S. I.
,
2006
,
Human Physiology
, 9th ed.,
McGraw-Hill
,
New York
.
49.
Weisstein
,
E. W.
, “
Disk Point Picking
,” http://mathworld.wolfram.com/DiskPointPicking.html
50.
Hellums
,
J. D.
,
1994
, “
Whitaker Lecture: Biorheology in Thrombosis Research
,”
Ann. Biomed. Eng.
,
22
(
5
), pp.
445
455
.10.1007/BF02367081
51.
Ramstack
,
J. M.
,
Zuckerman
,
L.
, and
Mockros
,
L. F.
,
1979
, “
Shear-Induced Activation of Platelets
,”
J. Biomech.
,
12
(
2
), pp.
113
125
.10.1016/0021-9290(79)90150-7
52.
Sheriff
,
J.
,
Bluestein
,
D.
,
Girdhar
,
G.
, and
Jesty
,
J.
,
2010
, “
High-Shear Stress Sensitizes Platelets to Subsequent Low-Shear Conditions
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1442
1450
.10.1007/s10439-010-9936-2
53.
Xenos
,
M.
,
Girdhar
,
G.
,
Alemu
,
Y.
,
Jesty
,
J.
,
Slepian
,
M.
,
Einav
,
S.
, and
Bluestein
,
D.
,
2010
, “
Device Thrombogenicity Emulator (DTE)-Design Optimization Methodology for Cardiovascular Devices: A Study in Two Bileaflet MHV Designs
,”
J. Biomech.
,
43
(
12
), pp.
2400
2409
.10.1016/j.jbiomech.2010.04.020
54.
Yoganathan
,
A.
,
He
,
Z.
, and
Jones
,
S. C.
,
2004
, “
Fluid Mechanics of Heart Valves
,”
Ann. Rev. Biomed. Eng.
,
6
(1)
, pp.
331
362
.10.1146/annurev.bioeng.6.040803.140111
55.
Ge
,
L.
,
Jones
,
S. C.
,
Sotiropoulos
,
F.
,
Healy
,
T. M.
, and
Yoganathan
,
A. P.
,
2003
, “
Numerical Simulation of Flow in Mechanical Heart Valves: Grid Resolution and the Assumption of Flow Symmetry
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
709
718
.10.1115/1.1614817
You do not currently have access to this content.