Availability of accurate three-dimensional (3D) kinematics of lumbar vertebrae is necessary to understand normal and pathological biomechanics of the lumbar spine. Due to the technical challenges of imaging the lumbar spine motion in vivo, it has been difficult to obtain comprehensive, 3D lumbar kinematics during dynamic functional tasks. The present study demonstrates a recently developed technique to acquire true 3D lumbar vertebral kinematics, in vivo, during a functional load-lifting task. The technique uses a high-speed dynamic stereo-radiography (DSX) system coupled with a volumetric model-based bone tracking procedure. Eight asymptomatic male participants performed weight-lifting tasks, while dynamic X-ray images of their lumbar spines were acquired at 30 fps. A custom-designed radiation attenuator reduced the radiation white-out effect and enhanced the image quality. High resolution CT scans of participants' lumbar spines were obtained to create 3D bone models, which were used to track the X-ray images via a volumetric bone tracking procedure. Continuous 3D intervertebral kinematics from the second lumbar vertebra (L2) to the sacrum (S1) were derived. Results revealed motions occurring simultaneously in all the segments. Differences in contributions to overall lumbar motion from individual segments, particularly L2–L3, L3–L4, and L4–L5, were not statistically significant. However, a reduced contribution from the L5–S1 segment was observed. Segmental extension was nominally linear in the middle range (20%–80%) of motion during the lifting task, but exhibited nonlinear behavior at the beginning and end of the motion. L5–S1 extension exhibited the greatest nonlinearity and variability across participants. Substantial AP translations occurred in all segments (5.0 ± 0.3 mm) and exhibited more scatter and deviation from a nominally linear path compared to segmental extension. Maximum out-of-plane rotations (<1.91 deg) and translations (<0.94 mm) were small compared to the dominant motion in the sagittal plane. The demonstrated success in capturing continuous 3D in vivo lumbar intervertebral kinematics during functional tasks affords the possibility to create a baseline data set for evaluating the lumbar spinal function. The technique can be used to address the gaps in knowledge of lumbar kinematics, to improve the accuracy of the kinematic input into biomechanical models, and to support development of new disk replacement designs more closely replicating the natural lumbar biomechanics.

References

1.
Rohlmann
,
A.
,
Zander
,
T.
,
Schmidt
,
H.
,
Wilke
,
H. J.
, and
Bergmann
,
G.
,
2006
, “
Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method
,”
J. Biomech.
,
39
(
13
), pp.
2484
2490
.10.1016/j.jbiomech.2005.07.026
2.
Christophy
,
M.
,
Faruk Senan
,
N. A.
,
Lotz
,
J. C.
, and
O'Reilly
,
O. M.
,
2012
, “
A Musculoskeletal Model for the Lumbar Spine
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
19
34
.10.1007/s10237-011-0290-6
3.
de Zee
,
M.
,
Hansen
,
L.
,
Wong
,
C.
,
Rasmussen
,
J.
, and
Simonsen
,
E. B.
,
2007
, “
A Generic Detailed Rigid-Body Lumbar Spine Model
,”
J. Biomech.
,
40
(
6
), pp.
1219
1227
.10.1016/j.jbiomech.2006.05.030
4.
Bifulco
,
P.
,
Cesarelli
,
M.
,
Cerciello
,
T.
, and
Romano
,
M.
,
2012
, “
A Continuous Description of Intervertebral Motion by Means of Spline Interpolation of Kinematic Data Extracted by Videofluoroscopy
,”
J. Biomech.
,
45
(
4
), pp.
634
641
.10.1016/j.jbiomech.2011.12.022
5.
Li
,
G. A.
,
Wang
,
S. B.
,
Passias
,
P.
,
Xia
,
Q.
,
Li
,
G.
, and
Wood
,
K.
,
2009
, “
Segmental in Vivo Vertebral Motion During Functional Human Lumbar Spine Activities
,”
Eur. Spine J.
,
18
(
7
), pp.
1013
1021
.10.1007/s00586-009-0936-6
6.
Rozumalski
,
A.
,
Schwartz
,
M. H.
,
Wervey
,
R.
,
Swanson
,
A.
,
Dykes
,
D. C.
, and
Novacheck
,
T.
,
2008
, “
The in Vivo Three-Dimensional Motion of the Human Lumbar Spine During Gait
,”
Gait Posture
,
28
(
3
), pp.
378
384
.10.1016/j.gaitpost.2008.05.005
7.
Panjabi
,
M. M.
,
1992
, “
The Stabilizing System of the Spine. Part I. Function, Dysfunction, Adaptation, and Enhancement
,”
J. Spinal Disord.
,
5
(
4
), pp.
383
389; discussion 397
.10.1097/00002517-199212000-00001
8.
Panjabi
,
M. M.
1992
, “
The Stabilizing System of the Spine. Part II. Neutral Zone and Instability Hypothesis
,”
J. Spinal Disord.
,
5
(
4
), pp.
390
396
; discussion 397.10.1097/00002517-199212000-00002
9.
Adams
,
M.
,
Bogduk
,
B.
,
Burton
,
K.
, and
Dolan
,
P.
,
2006
,
The Biomechanics of Back Pain
,
Churchill Livingstone
,
New York
.
10.
Anderst
,
W. J.
,
Vaidya
,
R.
, and
Tashman
,
S.
,
2008
, “
A Technique to Measure Three-Dimensional in Vivo Rotation of Fused and Adjacent Lumbar Vertebrae
,”
Spine J.
,
8
(
6
), pp.
991
997
.10.1016/j.spinee.2007.07.390
11.
Zhang
,
X.
, and
Xiong
,
J.
,
2003
, “
Model-Guided Derivation of Lumbar Vertebral Kinematics in Vivo Reveals the Difference Between External Marker-Defined and Internal Segmental Rotations
,”
J. Biomech.
,
36
(
1
), pp.
9
17
.10.1016/S0021-9290(02)00323-8
12.
Pearcy
,
M.
,
Portek
,
I.
, and
Shepherd
,
J.
,
1984
, “
Three-Dimensional X-Ray Analysis of Normal Movement in the Lumbar Spine
,”
Spine
,
9
(
3
), pp.
294
297
.10.1097/00007632-198404000-00013
13.
Passias
,
P. G.
,
Wang
,
S. B.
,
Kozanek
,
M.
,
Xia
,
Q.
,
Li
,
W. S.
,
Grottkau
,
B.
,
Wood
,
K. B.
, and
Li
,
G. A.
,
2011
, “
Segmental Lumbar Rotation in Patients With Discogenic Low Back Pain During Functional Weight-Bearing Activities
,”
J. Bone Joint Surg. Am. Vol.
,
93A
(
1
), pp.
29
37
.10.2106/JBJS.I.01348
14.
Wang
,
S.
,
Xia
,
Q.
,
Passias
,
P.
,
Wood
,
K.
, and
Li
,
G.
,
2009
, “
Measurement of Geometric Deformation of Lumbar Intervertebral Discs Under In-Vivo Weightbearing Condition
,”
J. Biomech.
,
42
(
6
), pp.
705
711
.10.1016/j.jbiomech.2009.01.004
15.
Fujii
,
R.
,
Sakaura
,
H.
,
Mukai
,
Y.
,
Hosono
,
N.
,
Ishii
,
T.
,
Iwasaki
,
M.
,
Yoshikawa
,
H.
, and
Sugamoto
,
K.
,
2007
, “
Kinematics of the Lumbar Spine in Trunk Rotation: in Vivo Three-Dimensional Analysis Using Magnetic Resonance Imaging
,”
Eur. Spine J.
,
16
(
11
), pp.
1867
1874
.10.1007/s00586-007-0373-3
16.
Ochia
,
R. S.
,
Inoue
,
N.
,
Renner
,
S. M.
,
Lorenz
,
E. P.
,
Lim
,
T. H.
,
Andersson
,
G. B.
, and
An
,
H. S.
,
2006
, “
Three-Dimensional in Vivo Measurement of Lumbar Spine Segmental Motion
,”
Spine
,
31
(
18
), pp.
2073
2078
.10.1097/01.brs.0000231435.55842.9e
17.
Gracovetsky
,
S.
,
Newman
,
N.
,
Pawlowsky
,
M.
,
Lanzo
,
V.
,
Davey
,
B.
, and
Robinson
,
L.
,
1995
, “
A Database for Estimating Normal Spinal Motion Derived From Noninvasive Measurements
,”
Spine
,
20
(
9
), pp.
1036
1046
.10.1097/00007632-199505000-00010
18.
Leardini
,
A.
,
Chiari
,
L.
,
Della Croce
,
U.
, and
Cappozzo
,
A.
,
2005
, “
Human Movement Analysis Using Stereophotogrammetry. Part 3. Soft Tissue Artifact Assessment and Compensation
,”
Gait Posture
,
21
(
2
), pp.
212
225
.10.1016/j.gaitpost.2004.05.002
19.
Cappozzo
,
A.
,
Catani
,
F.
,
Leardini
,
A.
,
Benedetti
,
M. G.
, and
Croce
,
U. D.
,
1996
, “
Position and Orientation in Space of Bones During Movement: Experimental Artefacts
,”
Clin. Biomech. (Bristol, Avon)
,
11
(
2
), pp.
90
100
.10.1016/0268-0033(95)00046-1
20.
Gonnella
,
C.
,
Paris
,
S. V.
, and
Kutner
,
M.
,
1982
, “
Reliability in Evaluating Passive Intervertebral Motion
,”
Phys. Therapy
,
62
(
4
), pp.
436
444
.
21.
Dickey
,
J. P.
,
Pierrynowski
,
M. R.
,
Bednar
,
D. A.
, and
Yang
,
S. X.
,
2002
, “
Relationship Between Pain and Vertebral Motion in Chronic Low-Back Pain Subjects
,”
Clin. Biomech. (Bristol, Avon)
,
17
(
5
), pp.
345
352
.10.1016/S0268-0033(02)00032-3
22.
Steffen
,
T.
,
Rubin
,
R. K.
,
Baramki
,
H. G.
,
Antoniou
,
J.
,
Marchesi
,
D.
, and
Aebi
,
M.
,
1997
, “
A New Technique for Measuring Lumbar Segmental Motion in Vivo. Method, Accuracy, and Preliminary Results
,”
Spine
,
22
(
2
), pp.
156
166
.10.1097/00007632-199701150-00006
23.
Kanayama
,
M.
,
Abumi
,
K.
,
Kaneda
,
K.
,
Tadano
,
S.
, and
Ukai
,
T.
,
1996
, “
Phase Lag of the Intersegmental Motion in Flexion-Extension of the Lumbar and Lumbosacral Spine—An in Vivo Study
,”
Spine
,
21
(
12
), pp.
1416
1422
.10.1097/00007632-199606150-00004
24.
Kanayama
,
M.
,
Tadano
,
S.
,
Kaneda
,
K.
,
Ukai
,
T.
,
Abumi
,
K.
, and
Ito
,
M.
,
1995
, “
A Cineradiographic Study on the Lumbar Disc Deformation During Flexion and Extension of the Trunk
,”
Clin. Biomech. (Bristol, Avon)
,
10
(
4
), pp.
193
199
.10.1016/0268-0033(95)91397-W
25.
Harada
,
M.
,
Abumi
,
K.
,
Ito
,
M.
, and
Kaneda
,
K.
,
2000
, “
Cineradiographic Motion Analysis of Normal Lumbar Spine During Forward and Backward Flexion
,”
Spine
,
25
(
15
), pp.
1932
1937
.10.1097/00007632-200008010-00011
26.
Okawa
,
A.
,
Shinomiya
,
K.
,
Komori
,
H.
,
Muneta
,
T.
,
Arai
,
Y.
, and
Nakai
,
O.
,
1998
, “
Dynamic Motion Study of the Whole Lumbar Spine by Videofluoroscopy
,”
Spine
,
23
(
16
), pp.
1743
1749
.10.1097/00007632-199808150-00007
27.
Wong
,
K. W.
,
Leong
,
J. C.
,
Chan
,
M. K.
,
Luk
,
K. D.
, and
Lu
,
W. W.
,
2004
, “
The Flexion-Extension Profile of Lumbar Spine in 100 Healthy Volunteers
,”
Spine
,
29
(
15
), pp.
1636
1641
.10.1097/01.BRS.0000132320.39297.6C
28.
Wong
,
K. W.
,
Luk
,
K. D.
,
Leong
,
J. C.
,
Wong
,
S. F.
, and
Wong
,
K. K.
,
2006
, “
Continuous Dynamic Spinal Motion Analysis
,”
Spine
,
31
(
4
), pp.
414
419
.10.1097/01.brs.0000199955.87517.82
29.
Teyhen
,
D. S.
,
Flynn
,
T. W.
,
Childs
,
J. D.
,
Kuklo
,
T. R.
,
Rosner
,
M. K.
,
Polly
,
D. W.
, and
Abraham
,
L. D.
,
2007
, “
Fluoroscopic Video to Identify Aberrant Lumbar Motion
,”
Spine
,
32
(
7
), pp.
E220
E229
.10.1097/01.brs.0000259206.38946.cb
30.
Ahmadi
,
A.
,
Maroufi
,
N.
,
Behtash
,
H.
,
Zekavat
,
H.
, and
Parnianpour
,
M.
,
2009
, “
Kinematic Analysis of Dynamic Lumbar Motion in Patients With Lumbar Segmental Instability Using Digital Videofluoroscopy
,”
Eur. Spine J.
,
18
(
11
), pp.
1677
1685
.10.1007/s00586-009-1147-x
31.
Cerciello
,
T.
,
Romano
,
M.
,
Bifulco
,
P.
,
Cesarelli
,
M.
, and
Allen
,
R.
,
2011
, “
Advanced Template Matching Method for Estimation of Intervertebral Kinematics of Lumbar Spine
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1293
1302
.10.1016/j.medengphy.2011.06.009
32.
Panjabi
,
M.
,
Chang
,
D.
, and
Dvorak
,
J.
,
1992
, “
An Analysis of Errors in Kinematic Parameters Associated With in Vivo Functional Radiographs
,”
Spine
,
17
(
2
), pp.
200
205
.10.1097/00007632-199202000-00014
33.
Tashman
,
S.
,
2008
, “
Comments on Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion
,”
J. Biomech.
,
41
(
15
), p.
3290
.10.1016/j.jbiomech.2008.07.038
34.
Anderst
,
W.
,
Zauel
,
R.
,
Bishop
,
J.
,
Demps
,
E.
, and
Tashman
,
S.
,
2009
, “
Validation of Three-Dimensional Model-Based Tibio-Femoral Tracking During Running
,”
Med. Eng. Phys.
,
31
(
1
), pp.
10
16
.10.1016/j.medengphy.2008.03.003
35.
Bey
,
M. J.
,
Zauel
,
R.
,
Brock
,
S. K.
, and
Tashman
,
S.
,
2006
, “
Validation of a New Model-Based Tracking Technique for Measuring Three-Dimensional, in Vivo Glenohumeral Joint Kinematics
,”
ASME J. Biomech. Eng.
,
128
(
4
), pp.
604
609
.10.1115/1.2206199
36.
Anderst
,
W. J.
,
Baillargeon
,
E.
,
Donaldson
,
W. F.
3rd
,
Lee
,
J. Y.
, and
Kang
,
J. D.
,
2011
, “
Validation of a Noninvasive Technique to Precisely Measure in Vivo Three-Dimensional Cervical Spine Movement
,”
Spine
,
36
(
6
), pp.
E393
E400
.10.1097/BRS.0b013e31820b7e2f
37.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
,
1999
, “
New in Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
,
24
(
8
), pp.
755
762
.10.1097/00007632-199904150-00005
38.
Della Croce
,
U.
,
Leardini
,
A.
,
Chiari
,
L.
, and
Cappozzo
,
A.
,
2005
, “
Human Movement Analysis Using Stereophotogrammetry. Part 4: Assessment of Anatomical Landmark Misplacement and Its Effects on Joint Kinematics
,”
Gait Posture
,
21
(
2
), pp.
226
237
.10.1016/j.gaitpost.2004.05.003
39.
Martin
,
D. E.
,
Greco
,
N. J.
,
Klatt
,
B. A.
,
Wright
, V
. J.
,
Anderst
,
W. J.
, and
Tashman
,
S.
,
2011
, “
Model-Based Tracking of the Hip: Implications for Novel Analyses of Hip Pathology
,”
J. Arthroplasty
,
26
(
1
), pp.
88
97
.10.1016/j.arth.2009.12.004
40.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
,
Stokes
,
I.
, and
Terminology Committee of the International Society of Standardization B
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine. International Society of Biomechanics
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
41.
Kane
,
T. L. P.
, and
Levinson
D.
,
1983
,
Spacecraft Dynamics
,
McGraw-Hill
,
New York
42.
Bey
,
M. J.
,
Kline
,
S. K.
,
Tashman
,
S.
, and
Zauel
,
R.
,
2008
, “
Accuracy of Biplane X-Ray Imaging Combined With Model-Based Tracking for Measuring In-Vivo Patellofemoral Joint Motion
,”
J. Orthop. Surg. Res.
,
3
, p.
38
.10.1186/1749-799X-3-38
43.
Lee
,
J. B. E.
, and
Anderst
,
W. J.
,
2010
, “
Lumbar Spine Motion During Functional Movement: in Vivo Validation of Flexion/Extension Movement Tracking
,”
3rd Annual Lumbar Spine Research Society Meeting
, Chicago, IL.
44.
Schauer
,
D. A.
, and
Linton
,
O. W.
,
2009
, “
NCRP Report No. 160, Ionizing Radiation Exposure of the Population of the United States, Medical Exposure—Are We Doing Less With More, and Is There a Role for Health Physicists?
,”
Health Phys.
,
97
(
1
), pp.
1
5
.10.1097/01.HP.0000356672.44380.b7
45.
Christner
,
J. A.
,
Kofler
,
J. M.
, and
McCollough
,
C. H.
,
2010
, “
Estimating Effective Dose for CT Using Dose-Length Product Compared With Using Organ Doses: Consequences of Adopting International Commission on Radiological Protection Publication 103 or Dual-Energy Scanning
,”
Am. J. Roentgenol.
,
194
(
4
), pp.
881
889
.10.2214/AJR.09.3462
46.
Wong
,
T. K.
, and
Lee
,
R. Y.
,
2004
, “
Effects of Low Back Pain on the Relationship Between the Movements of the Lumbar Spine and Hip
,”
Human Movement Sci.
,
23
(
1
), pp.
21
34
.10.1016/j.humov.2004.03.004
47.
Lee
,
R. Y.
, and
Wong
,
T. K.
,
2002
, “
Relationship Between the Movements of the Lumbar Spine And Hip
,”
Human Movement Sci.
,
21
(
4
), pp.
481
494
.10.1016/S0167-9457(02)00117-3
48.
Haque
,
M. A.
,
Anderst
,
W.
,
Tashman
,
S.
, and
Marai
,
G. E.
,
2013
, “
Hierarchical Model-Based Tracking of Cervical Vertebrae From Dynamic Biplane Radiographs
,”
Med. Eng. Phys
.,
35
(7), pp.
994
1004
.10.1016/j.medengphy.2012.09.012
49.
Lee
,
S. W.
,
Wong
,
K. W.
,
Chan
,
M. K.
,
Yeung
,
H. M.
,
Chiu
,
J. L.
, and
Leong
,
J. C.
,
2002
, “
Development and Validation of a New Technique for Assessing Lumbar Spine Motion
,”
Spine
,
27
(
8
), pp.
E215
E220
.10.1097/00007632-200204150-00022
50.
O'Reilly
,
O. M.
,
Metzger
,
M. F.
,
Buckley
,
J. M.
,
Moody
,
D. A.
, and
Lotz
,
J. C.
,
2009
, “
On the Stiffness Matrix of the Intervertebral Joint: Application to Total Disk Replacement
,”
ASME J. Biomech. Eng.
,
131
(
8
), p.
081007
.10.1115/1.3148195
51.
Stokes
, I
. A.
,
Gardner-Morse
,
M.
,
Churchill
,
D.
, and
Laible
,
J. P.
,
2002
, “
Measurement of a Spinal Motion Segment Stiffness Matrix
,”
J. Biomech.
,
35
(
4
), pp.
517
521
.10.1016/S0021-9290(01)00221-4
52.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A.
,
2004
, “
Structural Behavior of Human Lumbar Spinal Motion Segments
,”
J. Biomech.
,
37
(
2
), pp.
205
212
.10.1016/j.jbiomech.2003.10.003
53.
Stokes
,
I. A.
, and
Gardner-Morse
,
M.
,
1995
, “
Lumbar Spine Maximum Efforts and Muscle Recruitment Patterns Predicted by a Model With Multijoint Muscles and Joints With Stiffness
,”
J. Biomech.
,
28
(
2
), pp.
173
186
.10.1016/0021-9290(94)E0040-A
54.
Stokes
,
I. A.
, and
Gardner-Morse
,
M.
,
2001
, “
Lumbar Spinal Muscle Activation Synergies Predicted by Multi-Criteria Cost Function
,”
J. Biomech.
,
34
(
6
), pp.
733
740
.10.1016/S0021-9290(01)00034-3
55.
Huynh
,
K. T.
,
Lu
, I
. G. W. F.
, and
Jagdish
,
B. N.
,
2010
, “
Simulating Dynamics of Thoracolumbar Spine Derived From LifeMOD Under Haptic Forces
,”
World Acad. Sci. Eng. Technol.
,
64
, pp.
278
285
.
56.
Abouhossein
,
A.
,
Weisse
,
B.
, and
Ferguson
,
S. J.
,
2011
, “
A Multibody Modelling Approach to Determine Load Sharing Between Passive Elements of the Lumbar Spine
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
6
), pp.
527
537
.10.1080/10255842.2010.485568
57.
Han
,
K. S.
,
Zander
,
T.
,
Taylor
,
W. R.
, and
Rohlmann
,
A.
,
2012
, “
An Enhanced and Validated Generic Thoraco-Lumbar Spine Model for Prediction of Muscle Forces
,”
Med. Eng. Phys.
,
34
(
6
), pp.
709
716
.10.1016/j.medengphy.2011.09.014
You do not currently have access to this content.