Collagen fiber realignment is one mechanism by which tendon responds to load. Re-alignment is altered when the structure of tendon is altered, such as in the natural process of aging or with alterations of matrix proteins, such as proteoglycan expression. While changes in re-alignment and mechanical properties have been investigated recently during development, they have not been studied in (1) aged tendons, or (2) in the absence of key proteoglycans. Collagen fiber re-alignment and the corresponding mechanical properties are quantified throughout tensile mechanical testing in both the insertion site and the midsubstance of mouse supraspinatus tendons in wild type (WT), decorin-null (Dcn-/-), and biglycan-null (Bgn-/-) mice at three different ages (90 days, 300 days, and 570 days). Percent relaxation was significantly decreased with age in the WT and Dcn-/- tendons, but not in the Bgn-/- tendons. Changes with age were found in the linear modulus at the insertion site where the 300 day group was greater than the 90 day and 570 day group in the Bgn-/- tendons and the 90 day group was smaller than the 300 day and 570 day groups in the Dcn-/- tendons. However, no changes in modulus were found across age in WT tendons were found. The midsubstance fibers of the WT and Bgn-/- tendons were initially less aligned with increasing age. The re-alignment was significantly altered with age in the WT tendons, with older groups responding to load later in the mechanical test. This was also seen in the Dcn-/- midsubstance and the Bgn-/- insertion, but not in the other locations. Although some studies have found changes in the WT mechanical properties with age, this study did not support those findings. However, it did show fiber re-alignment changes at both locations with age, suggesting a breakdown of tendon's ability to respond to load in later ages. In the proteoglycan-null tendons however, there were changes in the mechanical properties, accompanied only by location-dependent re-alignment changes, suggesting a site-specific role for these molecules in loading. Finally, changes in the mechanical properties did not occur in concert with changes in re-alignment, suggesting that typical mechanical property measurements alone are insufficient to describe how structural alterations affect tendon's response to load.

References

1.
Vogel
,
H. G.
,
1978
, “
Influence of Maturation and Age on Mechanical and Biochemical Parameters of Connective Tissue of Various Organs in the Rat
,”
Connect. Tissue Res.
,
6
(
3
), pp.
161
166
.10.3109/03008207809152626
2.
Nielsen
,
H. M.
,
Skalicky
,
M.
, and
Viidik
,
A.
,
1998
, “
Influence of Physical Exercise on Aging Rats. III. Life-Long Exercise Modifies the Aging Changes of the Mechanical Properties of Limb Muscle Tendons
,”
Mech. Ageing Dev.
,
100
(
3
), pp.
243
260
.10.1016/S0047-6374(97)00147-4
3.
Shadwick
,
R. E.
,
1990
, “
Elastic Energy Storage in Tendons: Mechanical Differences Related to Function and Age
,”
J. Appl. Physiol.
,
68
(
3
), pp.
1033
1040
.10.1063/1.346741
4.
Haut
,
R. C.
,
Lancaster
,
R. L.
, and
Decamp
,
C. E.
,
1992
, “
Mechanical Properties of the Canine Patellar Tendon: Some Correlations With Age and the Content of Collagen
,”
J. Biomech.
,
25
(
2
), pp.
163
173
.10.1016/0021-9290(92)90273-4
5.
Dressler
,
M. R.
,
Butler
,
D. L.
,
Wenstrup
,
R.
,
Awad
,
H. A.
,
Smith
,
F.
, and
Boivin
,
G. P.
,
2002
, “
A Potential Mechanism for Age-Related Declines in Patellar Tendon Biomechanics
,”
J. Orthop. Res.
,
20
(
6
), pp.
1315
1322
.10.1016/S0736-0266(02)00052-9
6.
Buckwalter
,
J. A.
,
Heckman
,
J. D.
, and
Petrie
,
D. P.
,
2003
, “
An AOA Critical Issue: Aging of the North American Population: New Challenges for Orthopaedics
,”
J. Bone Joint Surg. Am.
,
85-A
(
4
), pp.
748
758
.
7.
Scott
,
J. E.
,
1992
, “
Supramolecular Organization of Extracellular Matrix Glycosaminoglycans, In Vitro and in the Tissues
,”
FASEB J.
,
6
(
9
), pp.
2639
2645
.
8.
Redaelli
,
A.
,
Vesentini
,
S.
,
Soncini
,
M.
,
Vena
,
P.
,
Mantero
,
S.
, and
Montevecchi
,
F. M.
,
2003
, “
Possible Role of Decorin Glycosaminoglycans in Fibril to Fibril Force Transfer in Relative Mature Tendons—A Computational Study From Molecular to Microstructural Level
,”
J. Biomech.
,
36
(
10
), pp.
1555
1569
.10.1016/S0021-9290(03)00133-7
9.
Kishore
,
V.
,
Paderi
,
J. E.
,
Akkus
,
A.
,
Smith
,
K. M.
,
Balachandran
,
D.
,
Beaudoin
,
S.
,
Panitch
,
A.
, and
Akkus
,
O.
,
2011
, “
Incorporation of a Decorin Biomimetic Enhances the Mechanical Properties of Electrochemically Aligned Collagen Threads
,”
Acta Biomater.
,
7
(
6
), pp.
2428
2436
.10.1016/j.actbio.2011.02.035
10.
Fessel
,
G.
, and
Snedeker
,
J. G.
,
2009
, “
Evidence Against Proteoglycan Mediated Collagen Fibril Load Transmission and Dynamic Viscoelasticity in Tendon
,”
Matrix Biol.
,
28
(
8
), pp.
503
510
.10.1016/j.matbio.2009.08.002
11.
Lujan
,
T. J.
,
Underwood
,
C. J.
,
Henninger
,
H. B.
,
Thompson
,
B. M.
, and
Weiss
,
J. A.
,
2007
, “
Effect of Dermatan Sulfate Glycosaminoglycans on the Quasi-Static Material Properties of the Human Medial Collateral Ligament
,”
J. Orthop. Res.
,
25
(
7
), pp.
894
903
.10.1002/jor.20351
12.
Screen
,
H. R.
,
Shelton
,
J. C.
,
Chhaya
,
V. H.
,
Kayser
,
M. V.
,
Bader
,
D. L.
, and
Lee
,
D. A.
,
2005
, “
The Influence of Noncollagenous Matrix Components on the Micromechanical Environment of Tendon Fascicles
,”
Ann. Biomed. Eng.
,
33
(
8
), pp.
1090
1099
.10.1007/s10439-005-5777-9
13.
Dourte
,
L. M.
,
Pathmanathan
,
L.
,
Jawad
,
A. F.
,
Iozzo
,
R. V.
,
Mienaltowski
,
M. J.
,
Birk
,
D. E.
, and
Soslowsky
,
L. J.
,
2012
, “
Influence of Decorin on the Mechanical, Compositional, and Structural Properties of the Mouse Patellar Tendon
,”
ASME J. Biomech. Eng.
,
134
(
3
), p.
031005
.10.1115/1.4006200
14.
Ansorge
,
H.
,
Adams
,
S.
,
Birk
,
D.
, and
Soslowsky
,
L.
,
2011
, “
Mechanical, Compositional, and Structural Properties of the Post-Natal Mouse Achilles Tendon
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1904
1913
.10.1007/s10439-011-0299-0
15.
Buckley
,
M. R.
,
Pathmanathan
,
L.
,
Mienaltowski
,
M. J.
,
Dunkman
,
A. A.
,
Kumar
,
A.
,
Beason
,
D. P.
,
Iozzo
,
R. V.
,
Birk
,
D. E.
, and
Soslowsky
,
L. J.
,
2012
, “
Age-Related Changes in Tendon Mechanical Properties are not Enhanced by the Absence of Biglycan and Decorin
,”
Trans. Orthop. Res. Soc.
,
37
, p.
1308
.
16.
Miller
,
K.
,
Connizzo
,
B.
, and
Soslowsky
,
L.
,
2012
, “
Collagen Fiber Re-Alignment in a Neonatal Developmental Mouse Supraspinatus Tendon Model
,”
Ann. Biomed. Eng.
,
40
(
5
), pp.
1102
1110
.10.1007/s10439-011-0490-3
17.
Miller
,
K. S.
,
Connizzo
,
B. K.
,
Feeney
,
E.
, and
Soslowsky
,
L. J.
,
2012
, “
Characterizing Local Collagen Fiber Re-Alignment and Crimp Behavior Throughout Mechanical Testing in a Mature Mouse Supraspinatus Tendon Model
,”
J. Biomech.
,
45
(
12
), pp.
2061
2065
.10.1016/j.jbiomech.2012.06.006
18.
Favata
,
M.
,
2006
, “
Scarless Healing in the Fetus: Implications and Strategies for Postnatal Tendon Repair
,” Ph.D. thesis, University of Pennsylvania, Philadelphia.
19.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
,
2009
, “
Effect of Fiber Distribution and Realignment on the Nonlinear and Inhomogeneous Mechanical Properties of Human Supraspinatus Tendon Under Longitudinal Tensile Loading
,”
J. Orthop. Res.
,
27
(
12
), pp.
1596
1602
.10.1002/jor.20938
20.
Derwin
,
K. A.
,
Soslowsky
,
L. J.
,
Green
,
W. D.
, and
Elder
,
S. H.
,
1994
, “
A New Optical System for the Determination of Deformations and Strains: Calibration Characteristics and Experimental Results
,”
J. Biomech.
,
27
(
10
), pp.
1277
1285
.10.1016/0021-9290(94)90281-X
21.
Peltz
,
C. D.
,
Sarver
,
J. J.
,
Dourte
,
L. M.
,
Wurgler-Hauri
,
C. C.
,
Williams
,
G. R.
, and
Soslowsky
,
L. J.
,
2010
, “
Exercise Following a Short Immobilization Period is Detrimental to Tendon Properties and Joint Mechanics in a Rat Rotator Cuff Injury Model
,”
J. Orthop. Res.
,
28
(
7
), pp.
841
845
.10.1002/jor.21059
22.
See supplementary material at for additional figures presenting total population re-alignment data and failure stress
.
23.
Vogel
,
H. G.
,
1983
, “
Age Dependence of Mechanical Properties of Rat Tail Tendons (Hysteresis Experiments)
,”
Aktuelle Gerontol.
,
13
(
1
), pp.
22
27
.
24.
Willett
,
T. L.
,
Labow
,
R. S.
,
Aldous
,
I. G.
,
Avery
,
N. C.
, and
Lee
,
J. M.
,
2010
, “
Changes in Collagen With Aging Maintain Molecular Stability After Overload: Evidence From an In Vitro Tendon Model
,”
ASME J. Biomech. Eng.
,
132
(
3
), p.
031002
.10.1115/1.4000933
25.
Zhang
,
G.
,
Ezura
,
Y.
,
Chervoneva
,
I.
,
Robinson
,
P. S.
,
Beason
,
D. P.
,
Carine
,
E. T.
,
Soslowsky
,
L. J.
,
Iozzo
,
R. V.
, and
Birk
,
D. E.
,
2006
, “
Decorin Regulates Assembly of Collagen Fibrils and Acquisition of Biomechanical Properties During Tendon Development
,”
J. Cell. Biochem.
,
98
(
6
), pp.
1436
1449
.10.1002/jcb.20776
26.
Robinson
,
P. S.
,
Huang
,
T.-f.
,
Kazam
,
E.
,
Iozzo
,
R. V.
,
Birk
,
D. E.
, and
Soslowsky
,
L. J.
,
2005
, “
Influence of Decorin and Biglycan on Mechanical Properties of Multiple Tendons in Knockout Mice
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
181
185
.10.1115/1.1835363
27.
Watanabe
,
T.
,
Imamura
,
Y.
,
Suzuki
,
D.
,
Hosaka
,
Y.
,
Ueda
,
H.
,
Hiramatsu
,
K.
, and
Takehana
,
K.
,
2012
, “
Concerted and Adaptive Alignment of Decorin Dermatan Sulfate Filaments in the Graded Organization of Collagen Fibrils in the Equine Superficial Digital Flexor Tendon
,”
J. Anat.
,
220
(
2
), pp.
156
163
.10.1111/j.1469-7580.2011.01456.x
28.
Eckert
,
C. E.
,
Fan
,
R.
,
Mikulis
,
B.
,
Barron
,
M.
,
Carruthers
,
C. A.
,
Friebe
,
V. M.
,
Vyavahare
,
N. R.
, and
Sacks
,
M. S.
,
2012
, “
On the Biomechanical Role of Glycosaminoglycans in the Aortic Heart Valve Leaflet
,”
Acta Biomat.
,
9
(1)
, pp.
4653
4660
.
29.
Birk
,
D. E.
,
Southern
,
J. F.
,
Zycband
,
E. I.
,
Fallon
,
J. T.
, and
Trelstad
,
R. L.
,
1989
, “
Collagen Fibril Bundles: A Branching Assembly Unit in Tendon Morphogenesis
,”
Development
,
107
(
3
), pp.
437
443
.
You do not currently have access to this content.