Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a “dual-joint” paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

References

1.
Weinstein
,
A.
,
Rome
,
B.
,
Reichman
,
W.
, and
Collins
J.
,
2012
, “
How Many Americans Are Currently Living With Total Knee Replacement?
Proc. of the 2012 American Academy of Orthopaedic Surgeons
,
San Francisco, CA
.
2.
Walker
,
P. S.
,
Blunn
,
G. W.
,
Broome
,
D. R.
,
Perry
,
J.
,
Watkins
,
A.
,
Sathasivam
,
S.
,
Dewar
,
M. E.
, and
Paul
J. P.
,
1997
, “
A Knee Simulating Machine for Performance Evaluation of Total Knee Replacements
,”
J. Biomech.
,
30
(
1
), pp.
83
89
.10.1016/S0021-9290(96)00118-2
3.
Bartel
,
D.
,
Bicknell
,
V.
, and
Wright
T.
,
1986
, “
The Effect of Conformity, Thickness, and Material on Stresses in Ultra-High Molecular Weight Components for Total Joint Replacement
,”
J. Bone Joint Surg. Am.
,
68
(
7
), pp.
1041
1051
.
4.
D'Lima
,
D. D.
,
Steklov
,
N.
,
Fregly
,
B. J.
,
Banks
,
S. A.
, and
Colwell
C. W. J.
,
2008
, “
In Vivo Contact Stresses During Activities of Daily Living After Knee Arthroplasty
,”
J. Orthop. Res.
,
26
(
12
), pp.
1549
1555
.10.1002/jor.20670
5.
Mundermann
,
A.
,
Dyrby
,
C. O.
,
D'Lima
,
D. D.
,
Colwell
,
C. W. J.
, and
Andriacchi
T. P.
,
2008
, “
In Vivo Knee Loading Characteristics During Activities of Daily Living as Measured by an Instrumented Total Knee Replacement
,”
J. Orthop. Res.
,
26
(
9
), pp.
1167
1172
.10.1002/jor.20655
6.
Varadarajan
,
K. M.
,
Moynihan
,
A. L.
,
D'Lima
,
D.
,
Colwell
,
C. W.
, and
Li
G.
,
2008
, “
In Vivo Contact Kinematics and Contact Forces of the Knee After Total Knee Arthroplasty During Dynamic Weight-Bearing Activities
,”
J. Biomech.
,
41
(
10
), pp.
2159
2168
.10.1016/j.jbiomech.2008.04.021
7.
Kutzner
,
I.
,
Heinlein
,
B.
,
Graichen
,
F.
,
Bender
,
A.
Rohlmann
,
A.
,
Halder
,
A.
,
Beier
,
A.
, and
Bergmann
G.
,
2010
, “
Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects
,”
J. Biomech.
,
43
(
11
), pp.
2164
2173
.10.1016/j.jbiomech.2010.03.046
8.
Li
,
G.
,
Suggs
,
J.
,
Hanson
,
G.
,
Durbhakula
,
S.
,
Johnson
,
T.
, and
Freiberg
A.
,
2006
, “
Three-Dimensional Tibiofemoral Articular Contact Kinematics of a Cruciate-Retaining Total Knee Arthroplasty
,”
J. Bone Joint Surg. Am.
,
88
(
2
), pp.
395
402
.10.2106/JBJS.D.03028
9.
Li
,
G.
,
Van de Velde
,
S. K.
, and
Bingham
J. T.
,
2008
, “
Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion
,”
J. Biomech.
,
41
(
7
), pp.
1616
1622
.10.1016/j.jbiomech.2008.01.034
10.
Suggs
,
J. F.
,
Hanson
,
G. R.
,
Park
,
S. E.
,
Moynihan
,
A. L.
, and
Li
G.
,
2008
, “
Patient Function After a Posterior Stabilizing Total Knee Arthroplasty: Cam-Post Engagement and Knee Kinematics
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
16
(
3
), pp.
290
296
.10.1007/s00167-007-0467-9
11.
Shelburne
,
K. B.
,
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Torry
M. R.
,
2004
, “
Pattern of Anterior Cruciate Ligament Force in Normal Walking
,”
J. Biomech.
,
37
(
6
), pp.
797
805
.10.1016/j.jbiomech.2003.10.010
12.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
M. G.
,
2005
, “
Muscle, Ligament, and Joint-Contact Forces at the Knee During Walking
,”
Med. Sci. Sports Exerc.
,
37
(
11
), pp.
1948
1956
.10.1249/01.mss.0000180404.86078.ff
13.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
M. G.
,
2006
, “
Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait
,”
J. Orthop. Res.
,
24
(
10
), pp.
1983
1990
.10.1002/jor.20255
14.
Taylor
,
W. R.
,
Heller
,
M. O.
,
Bergmann
,
G.
, and
Duda
G. N.
,
2004
, “
Tibio-Femoral Loading During Human Gait and Stair Climbing
,”
J. Orthop. Res.
,
22
(
3
), pp.
625
632
.10.1016/j.orthres.2003.09.003
15.
Kim
,
H. J.
,
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Walter
,
J. P.
,
Fregly
,
B. J.
, and
Pandy
M. G.
,
2009
, “
Evaluation of Predicted Knee-Joint Muscle Forces During Gait Using an Instrumented Knee Implant
,”
J. Orthop. Res.
,
27
(
10
), pp.
1326
1331
.10.1002/jor.20876
16.
Lin
Y.-C.
,
Haftka
,
R. T.
,
Queipo
,
N. V.
, and
Fregly
B. J.
,
2009
, “
Two-Dimensional Surrogate Contact Modeling for Computationally Efficient Dynamic Simulation of Total Knee Replacements
,”
J. Biomech. Eng.
,
131
(
4
), p.
041010
.10.1115/1.3005152
17.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J, Biomech
,
36
(
3
), pp.
321
328
.10.1016/S0021-9290(02)00432-3
18.
Thelen
,
D. G.
, and
Anderson
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
(
6
), pp.
1107
1115
.10.1016/j.jbiomech.2005.02.010
19.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
20.
Steele
,
K. M.
,
Seth
,
A.
,
Hicks
,
J. L.
,
Schwartz
,
M. S.
, and
Delp
S. L.
,
2010
, “
Muscle Contributions to Support and Progression During Single-Limb Stance in Crouch Gait
,”
J. Biomech.
,
43
(
11
), pp.
2099
2105
.10.1016/j.jbiomech.2010.04.003
21.
Hamner
,
S. R.
,
Seth
,
A.
, and
Delp
S. L.
,
2010
, “
Muscle Contributions to Propulsion and Support During Running
,”
J. Biomech.
,
43
(
14
), pp.
2709
2716
.10.1016/j.jbiomech.2010.06.025
22.
Chumanov
,
E. S.
,
Heiderscheit
,
B. C.
, and
Thelen
D. G.
,
2007
, “
The Effect of Speed and Influence of Individual Muscles on Hamstring Mechanics During the Swing Phase of Sprinting
,”
J. Biomech.
,
40
(
16
), pp.
3555
3562
.10.1016/j.jbiomech.2007.05.026
23.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
24.
Zatsiorsky
,
V.
, and
Seluyanov
V.
,
1985
, “
Estimation of the Mass and Inertia Characteristics of the Human Body by Means of the Best Predictive Regression Equations
,”
Int. Ser. Biomech.
,
5
, pp.
233
239
.
25.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
J. M.
,
1990
, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
,
37
(
8
), pp.
757
767
.10.1109/10.102791
26.
Schutte
L.
,
1992
, “
Using Musculoskeletal Models to Explore Strategies for Improving Performance in Electrical Stimulation-Induced Leg Cycle Ergometry
,”
Ph.D. dissertation
,
Stanford University
,
Stanford, CA
.
27.
Schutte
,
L. M.
,
Rodgers
,
M. M.
,
Zajac
,
F. E.
, and
Glaser
R. M.
,
1993
, “
Improving the Efficacy of Electrical Stimulation-Induced Leg Cycle Ergometry: An Analysis Based on a Dynamic Musculoskeletal Model
,”
IEEE Trans. Rehab. Eng.
,
1
(
2
), pp.
109
125
.10.1109/86.242425
28.
Brand
,
R. A.
,
Pedersen
,
D. R.
, and
Friederich
J. A.
,
1986
, “
The Sensitivity of Muscle Force Predictions to Changes in Physiologic Cross-Sectional Area
,”
J. Biomech.
,
19
(
8
), pp.
589
596
.10.1016/0021-9290(86)90164-8
29.
Wickiewicz
,
T. L.
,
Roy
,
R. R.
,
Powell
,
P. L.
, and
Edgerton
V. R.
,
1983
, “
Muscle Architecture of the Human Lower Limb
,”
Clin. Orthop. Relat. Res.
,
179
, pp.
275
283
.10.1097/00003086-198310000-00042
30.
Thom
,
J. M.
,
Morse
,
C. I.
,
Birch
,
K. M.
, and
Narici
M. V.
,
2005
, “
Triceps Surae Muscle Power, Volume, and Quality in Older Versus Younger Healthy Men
,”
J. Gerontol. A Biol.
,
60
(
9
), pp.
1111
1117
.10.1093/gerona/60.9.1111
31.
Makino
,
A.
,
Aponte Tinao
,
L.
,
Ayerza
,
M. A.
,
Garrido
,
C. P.
,
Paz
,
M. C.
, and
Muscolo
D. L.
,
2006
, “
Anatomic Double-Bundle Posterior Cruciate Ligament Reconstruction Using Double-Double Tunnel With Tibial Anterior and Posterior Fresh-Frozen Allograft
,”
J.Arthrosc. Rel. Surg.
,
22
(
6
), pp.
684.e1
684.e5
.10.1016/j.arthro.2005.08.055
32.
Kurosawa
,
H.
,
Walker
,
P. S.
,
Abe
,
S.
,
Garg
,
A.
, and
Hunter
T.
,
1985
, “
Geometry and Motion of the Knee for Implant and Orthotic Design
,”
J. Biomech.
,
18
(
7
), pp.
487
491
.10.1016/0021-9290(85)90663-3
33.
Piazza
,
S. J.
, and
Delp
S. L.
,
2001
, “
Three-Dimensional Dynamic Simulation of Total Knee Replacement Motion During a Step-Up Task
,”
J. Biomech. Eng.
,
123
(
6
), pp.
599
606
.10.1115/1.1406950
34.
Li
,
G.
,
Sakamoto
,
M.
, and
Chao
E. Y.
,
1997
, “
A Comparison of Different Methods in Predicting Static Pressure Distribution in Articulating Joints
,”
J. Biomech.
,
30
(
6
), pp.
635
638
.10.1016/S0021-9290(97)00009-2
35.
Landon
,
R. L.
,
Hast
,
M. W.
, and
Piazza
S. J.
,
2009
, “
Robust Contact Modeling Using Trimmed NURBS Surfaces for Dynamic Simulations of Articular Contact
,”
Comput. Meth. Biomech. Biomed. Eng.
,
198
(
30–32
), pp.
2339
2346
.10.1016/j.cma.2009.02.022
36.
Moran
,
M. F.
,
Bhimji
,
S.
,
Racanelli
,
J.
, and
Piazza
S. J.
,
2008
, “
Computational Assessment of Constraint in Total Knee Replacement
,”
J. Biomech.
,
41
(
9
), pp.
2013
2020
.10.1016/j.jbiomech.2008.03.020
37.
Perry
J.
,
1992
,
Gait Analysis: Normal and Pathological Function
,
Slack
,
New York
.
38.
Landon
R.
,
2006
, “
Dynamic Musculoskeletal Computer Simulations for Evaluation of Total Knee Replacement Component Performance
,”
Master's thesis
,
Pennsylvania State University
,
University Park, PA
.
39.
Thompson
,
J. A.
,
Hast
,
M. W.
,
Granger
,
J. F.
,
Piazza
,
S. J.
, and
Siston
R. A.
,
2011
, “
Biomechanical Effects of Total Knee Arthroplasty Component Malrotation: A Computational Simulation
,”
J. Orthop. Res.
,
29
(
7
), pp.
969
975
.10.1002/jor.21344
40.
Mason
,
J. J.
,
Leszko
,
F.
,
Johnson
,
T.
, and
Komistek
R. D.
,
2008
, “
Patellofemoral Joint Forces
,”
J. Biomech.
,
41
(
11
), pp.
2337
2348
.10.1016/j.jbiomech.2008.04.039
You do not currently have access to this content.