Design excellence (DEX) tools have been widely used for years in some industries for their potential to facilitate new product development. The medical sector, targeted by cost pressures, has therefore started adopting them. Numerous tools are available; however only appropriate deployment during the new product development stages can optimize the overall process. The primary study objectives were to describe generic tools and illustrate their implementation and management during the development of new orthopaedic implants, and compile a reference package. Secondary objectives were to present the DEX tool investment costs and savings, since the method can require significant resources for which companies must carefully plan. The publicly available DEX method “Define Measure Analyze Design Verify Validate” was adopted and implemented during the development of a new spinal implant. Several tools proved most successful at developing the correct product, addressing clinical needs, and increasing market penetration potential, while reducing design iterations and manufacturing validations. Cost analysis and Pugh Matrix coupled with multi generation planning enabled developing a strong rationale to activate the project, set the vision and goals. improved risk management and product map established a robust technical verification-validation program. Design of experiments and process quantification facilitated design for manufacturing of critical features, as early as the concept phase. Biomechanical testing with analysis of variance provided a validation model with a recognized statistical performance baseline. Within those tools, only certain ones required minimum resources (i.e., business case, multi generational plan, project value proposition, Pugh Matrix, critical To quality process validation techniques), while others required significant investments (i.e., voice of customer, product usage map, improved risk management, design of experiments, biomechanical testing techniques). All used techniques provided savings exceeding investment costs. Some other tools were considered and found less relevant. A matrix summarized the investment costs and generated estimated savings. Globally, all companies can benefit from using DEX by smartly selecting and estimating those tools with best return on investment at the start of the project. For this, a good understanding of the available company resources, background and development strategy are needed. In conclusion, it was possible to illustrate that appropriate management of design excellence tools can greatly facilitate the development of new orthopaedic implant systems.

References

1.
Justiano
,
J. M.
, and
Gopalaswamy
,
V.
,
2005
,
Six Sigma for Medical Device Design
,
CRC Press
,
Boca Raton, FL
.
2.
Justiano
,
J. M.
, and
Gopalaswamy
,
V.
,
2003
,
Practical Design Control Implementation for Medical Devices
,
CRC Press
, Boca Raton, FL.
3.
Voor
,
M. J.
,
Mehta
,
S.
,
Wang
,
M.
,
Zhang
,
Y. M.
,
Mahan
,
J.
, and
Johnson
,
J. R.
,
1998
, “
Biomechanical Evaluation of Posterior and Anterior Lumbar Interbody Fusion Techniques
,”
J. Spinal Disord.
,
11
(
4
), pp.
328
334
.10.1097/00002517-199808000-00011
4.
Harris
,
B. M.
,
Hilibrand
,
A. S.
, Savas, P. E., Pellegrino, A., Vaccaro, A. R., Siegler, S., and Albert, T. J.,
2004
, “
Transforaminal Lumbar Interbody Fusion: The Effect of Various Instrumentation Techniques on the Flexibility of the Lumbar sSpine
,”
Spine
,
29
(
4
), pp.
E65
E70
.10.1097/01.BRS.0000113034.74567.86
5.
Ames
,
C. P.
,
Acosta
,
F. L.
, Chi, J., Iyengar, J., Muiru, W., Emre, A., and Puttlitz, C.,
2005
, “
Biomechanical Comparison of Posterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion Performed at 1 and 2 Levels
,”
Spine
,
30
(
19
), pp.
E562
E566
.10.1097/01.brs.0000180505.80347.b1
6.
Lund
,
T.
,
Oxland
,
T. R.
, Jost, B., Cripton, P., Grassmann, S., Etter, C., and Nolte, L. P.,
1998
, “
Interbody Cage Stabilisation in the Lumbar Spine: Biomechanical Evaluation of Cage Design, Posterior Instrumentation and Bone Density
,”
J. Bone Joint Surg. Br.
,
80
(
2
), pp.
351
359
.10.1302/0301-620X.80B2.7693
7.
Tuli
,
J.
,
Tuli
,
S.
, Eichler, M. E., and Woodard, E. J.,
2007
, “
A Comparison of Long-Term Outcomes of Translaminar Facet Screw Fixation and Pedicle Screw Fixation: A Prospective Study
,”
J. Neurosurg. Spine
,
7
, pp.
287
292
.10.3171/SPI-07/09/287
8.
Yamamoto
,
I.
,
Panjabi
,
M. M.
, Crisco, J. J., and Oxland, T.,
1989
, “
Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint
,”
Spine
,
14
(
11
), pp.
1256
1260
.10.1097/00007632-198911000-00020
9.
Stonecipher
,
T.
, and
Wright
,
S.
,
1989
, “
Posterior Lumbar interbody Fusion With Facet-Screw Fixation
,”
Spine
,
14
(
4
), pp.
468
471
.10.1097/00007632-198904000-00026
10.
Evans
,
J. H.
,
1985
, “
Biomechanics of Lumbar Fusion
,”
Clin. Orthop.
,
193
, pp.
38
46
.
11.
Best
,
N. M.
, and
Sasso
,
R. C.
,
2006
, “
Efficacy of Translaminar Facet Screw Fixation in Circumferential Interbody Fusions as Compared to Pedicle Screw Fixation
,”
J. Spinal Disord. Tech.
,
19
, pp.
98
103
.10.1097/01.bsd.0000179244.76244.5e
12.
Jang
,
J. S.
,
Lee
,
S. H.
,
2005
, “
Clinical Analysis of Percutaneous Facet Screw Fixation After Anterior Lumbar Interbody Fusion
,”
J. Neurosurg. Spine
,
3
, pp.
40
46
.10.3171/spi.2005.3.1.0040
13.
Kang
,
H. Y.
,
Lee
,
S. H.
, Jeon, S. H., and Shin, S. W.,
2007
, “
Computed Tomography-Guided Percutaneous Facet Screw Fixation in the Lumbar Spine. Technical Note
,”
J. Neurosurg. Spine
,
7
, pp.
95
98
.10.3171/SPI-07/07/095
14.
Phillips
,
F. M.
,
Cunningham
,
B.
, Carandang, G., Ghanayem, A., Voronov, L., Havey, R., and Patwardhan, A.,
2004
, “
Effect of Supplemental Translaminar Facet Screw Fixation on the Stability of Stand-Alone Anterior Lumbar Interbody Fusion Cages Under Physiologic Compressive Preloads
,”
Spine
,
29
, pp.
1731
1736
.10.1097/01.BRS.0000134570.08901.30
15.
Mark
,
B.
,
Kabins
,
M. D.
, and Weistein, J.,
1991
, “
The History of Vertebral Screw and Pedicle Screw Fixation
,”
Iowa Orthop. J.
,
11
, pp.
127
136
.
16.
Akbay
,
A.
,
Inceoğlu
,
S.
, Milks, R., Schlenk, R., Palaoglu, S., and Benzel, E.C.,
2005
, “
Thoracic Transfacet Pedicle Screw Fixation: A New Instrumentation Technique
,”
J. Neurosurg.
,
3
, pp.
224
229
.
17.
Ferrara
,
L. A.
, Secor, J. L., Jin, B. H., Wakefield, A., Inceoglu, S., and Benzel, E. C.,
2003
, “
A Biomechanical Comparison of Facet Screw Fixation and Pedicle Screw Fixation
,”
Spine
,
28
(
12
), pp.
1226
1234
.
18.
Mahar
,
A.
, Kim, C., Oka, R., Odell, T., Perry, A., Mirkovic, S., and Garfin, S.,
2006
, “
Biomechanical Comparison of a Novel Percutaneous Transfacet Device and a Traditional Posterior System for Single Level Fusion
,”
J. Spinal Disord. Tech.
,
19
, pp.
591
594
.10.1097/01.bsd.0000211238.21835.e4
19.
Beaubien
,
B. P.
, Mehbod, A. A., Kallemeier, P. M., Lew, W. D., Buttermann, G. R., Transfeldt, E. E., and Wood, K. B.,
2004
, “
Posterior Augmentation of an Anterior Lumbar Interbody Fusion
,”
Spine
,
29
(
19
), pp.
E406
E412
.10.1097/01.brs.0000141187.53366.9b
20.
Kiapour
,
A.
,
Kiapour
,
A. M.
,
Serhan
,
H.
,
Garfin
,
S.
,
Allen
,
T.
, and
Goel
,
V. K.
, “
Effect of Different Fixation Techniques on Segmental Kinematics and Load Sharing of Lumbar Spine: A FEM Study
,” ASME 2012 Summer Bioengineering Conference, Parts A and B. Fajardo, Puerto Rico, June 20–23, 2012, Paper No. SBC2012-80882, pp. 1127–1128.
21.
Molina
,
C.
,
Kretzer
,
R. M.
,
Hu
,
N.
,
Umekoji
,
H.
,
Cunningham
,
B. W.
, and
Serhan
,
H.
, “
A Comparative Biomechanical Analysis of Facet Screw vs. Pedicle Screw Fixation to Augment Lateral Interbody Spinal Arthrodesis. An In-Vitro Human Cadaveric Model
” Spine (submitted).
You do not currently have access to this content.