In most finite element (FE) studies of vertebral bodies, axial compression is the loading mode of choice to investigate structural properties, but this might not adequately reflect the various loads to which the spine is subjected during daily activities or the increased fracture risk associated with shearing or bending loads. This work aims at proposing a patient-specific computer tomography (CT)-based methodology, using the currently most advanced, clinically applicable finite element approach to perform a structural investigation of the vertebral body by calculation of its full six dimensional (6D) stiffness matrix. FE models were created from voxel images after smoothing of the peripheral voxels and extrusion of a cortical shell, with material laws describing heterogeneous, anisotropic elasticity for trabecular bone, isotropic elasticity for the cortex based on experimental data. Validated against experimental axial stiffness, these models were loaded in the six canonical modes and their 6D stiffness matrix calculated. Results show that, on average, the major vertebral rigidities correlated well or excellently with the axial rigidity but that weaker correlations were observed for the minor coupling rigidities and for the image-based density measurements. This suggests that axial rigidity is representative of the overall stiffness of the vertebral body and that finite element analysis brings more insight in vertebral fragility than densitometric approaches. Finally, this extended patient-specific FE methodology provides a more complete quantification of structural properties for clinical studies at the spine.

References

1.
Crawford
,
R. P.
,
Cann
,
C. E.
, and
Keaveny
,
T. M.
, 2003, “
Finite Element Models Predict in vitro Vertebral Body Compressive Strength Better Than Quantitative Computed Tomography
,”
Bone
,
33
(
4
), pp.
744
750
.
2.
Buckley
,
J. M.
,
Cheng
,
L.
,
Loo
,
K.
,
Slyeld
,
C.
, and
Xu
,
Z.
, 2007, “
Quantitative Computed Tomography-Based Predictions of Vertebral Strength in Anterior Bending
,”
Spine
,
32
(
9
), pp.
1019
1027
.
3.
Chevalier
,
Y.
,
Charlebois
,
M.
,
Pahr
,
D.
,
Varga
,
P.
,
Heini
,
P.
,
Schneider
,
E.
, and
Zysset
,
P.
, 2008, “
A Patient-Specific Finite Element Methodology to Predict Damage Accumulation in Vertebral Bodies Under Axial Compression, Sagittal Flex-ion and combined loads
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
5
), pp.
477
487
.
4.
Keaveny
,
T. M.
,
Donley
,
D. W.
,
Hoffmann
,
P. F.
,
Mitlak
,
B. H.
,
Glass
,
E. V.
, and
Martin
,
J. A. S.
, 2007, “
Effects of Teriparatide and Alendronate on Vertebral Strength as Assessed by Finite Element Modeling of QCT Scans in Women With Osteoporosis
,”
J. Bone Miner. Res.
,
22
(
1
), pp.
149
157
.
5.
Graeff
,
C.
,
Zysset
,
P.
Marin
,
F.
, and
Glüer
,
C.
, 2007, “
Bone Apposition in Patients on Teriparatide Treatment Is Preferably Directed to Skeletal Regions of Local Structural Weakness: Assessment by High Resolution CT Based Finite Element Analysis in vivo
,”
29th Annual Meeting of the American Society of Bone and Mineral Research
,
Hawaii
.
6.
Graeff
,
C.
,
Chevalier
,
Y.
,
Charlebois
,
M.
,
Varga
,
P.
,
Pahr
,
D.
,
Nickelsen
,
T. N.
,
Morlock
,
M. M.
,
Gler
,
C. C.
, and
Zysset
,
P. K.
, 2009, “
Improvements in Vertebral Body Strength Under Teriparatide Treatment Assessed in vivo by Finite Element Analysis: Results From the Eurofors Study
,”
J. Bone Miner. Res.
,
24
(
10
), pp.
1672
1680
.
7.
Chevalier
,
Y.
,
Quek
,
E.
,
Borah
,
B.
,
Gross
,
G.
,
Stewart
,
J.
,
Lang
,
T.
, and
Zysset
,
P.
, 2010, “
Biomechanical Effects of Teriparatide in Women With Osteoporosis Treated Previously With Alendronate and Risedronate: Results From Quantitative Computed Tomography-Based Finite Element Analysis of the Vertebral Body
,”
Bone
,
46
(
1
), pp.
41
48
.
8.
Chevalier
,
Y.
Pahr
,
D.
, and
Zysset
,
P. K.
, 2009, “
The Role of Cortical Shell and Trabecular Fabric in Finite Element Analysis of the Human Vertebral Body
,”
ASME J. Biomech. Eng.
,
131
,p.
111003
.
9.
Liebschner
,
M. A. K.
,
Kopperdahl
,
D. L.
,
Rosenberg
,
W. S.
, and
Keaveny
,
T. M.
, 2003, “
Finite Element Modeling of the Human Thoracolumbar Spine
,”
Spine
,
28
(
6
), pp.
559
565
.
10.
Whealan
,
K. M.
,
Kwak
,
S. D.
,
Tedrow
,
J. R.
,
Inoue
,
K.
, and
Snyder
,
B. D.
, 2000, “
Non- invasive Imaging Predicts Failure Load of the Spine With Simulated Osteolytic Defects
,”
J. Bone Joint Surg. Am.
,
82
(
9
), pp.
1240
1251
.
11.
Buckley
,
J. M.
,
Kuo
,
C. C.
,
Cheng
,
L. C.
,
Loo
,
K.
,
Motherway
,
J.
,
Slyfield
,
C.
,
Deviren
,
V.
, and
Ames
,
C.
, 2009, “
Relative Strength of Thoracic Vertebrae in Axial Compression Versus Flexion
,”
Spine J.
,
9
(
6
), pp.
478
485
.
12.
Crawford
,
R. P.
, and
Keaveny
,
T. M.
, 2004, “
Relationship Between Sxial and Bending Behaviors of the Human Thoracolumbar Vertebra
,”
Spine
,
29
(
20
), pp.
2248
2255
.
13.
Homminga
,
J.
,
Van-Rietbergen
,
B.
,
Lochmüller
,
E. M.
,
Weinans
,
H.
,
Eckstein
,
F.
, and
Huiskes
,
R.
, 2004, “
The Osteoporotic Vertebral Structure Is Well Adapted to the Loads of Daily Life, but Not to Infrequent “Error” Loads
,”
Bone
,
34
(
3
), pp.
510
516
.
14.
Gardner-Morse
,
M. G.
,
Stokes
,
I. A.
,
Churchill
,
D.
, and
Badger
,
G.
, 2002, “
Motion Segment Stiffness Measured Without Physiological Levels of Axial Compressive Preload Underestimates the in vivo Values in All Six Degrees of Freedom
,”
Stud. Health Technol. Inform.
,
91
, pp.
167
172
.
15.
Stokes
,
I. A.
,
Gardner-Morse
,
M.
,
Churchill
,
D.
, and
Laible
,
J. P.
, 2002, “
Measurement of a Spinal Motion Segment Stiffness Matrix
,”
J. Biomech.
,
35
(
4
), pp.
517
521
.
16.
Gardner-Morse
,
M. G.
, and
Stokes
,
I. A. F.
, 2004, “
Structural Behavior of Human Lumbar Spinal Motion Segments
,”
J. Biomech.
,
37
(
2
), pp.
205
212
.
17.
O’Reilly
,
O. M.
,
Metzger
,
M. F.
,
Buckley
,
J. M.
,
Moody
,
D. A.
, and
Lotz
,
J. C.
, 2009, “
On the Stiffness Matrix of the Intervertebral Joint: Applica-tion to Total Disk Replacement
,”
ASME J. Biomech. Eng
,
131
(
8
), p.
081007
.
18.
Zander
,
T.
,
Rohlmann
,
A.
, and
Bergmann
,
G.
, 2009, “
Influence of Cifferent Artificial Disc Kinematics on Spine Biomechanics
,”
Clin. Biomech.
,
24
(
2
), pp.
135
142
.
19.
Meleddu
,
A.
,
Barrault
,
S.
, and
Zysset
,
P. K.
, 2007, “
A Rigorous Method for Evaluation of the 6D Compliance of External Fixators
,”
Biomech. Model. Mechanobiol.
,
6
(
4
), pp.
253
264
.
20.
Boyd
,
S. K.
, and
Müller
,
R.
, 2006, “
Smooth Surface Meshing for Automated Finite Element Model Generation From 3d Image Data
,”
J. Biomech.
,
39
(
7
), pp.
1287
1295
.
21.
Chevalier
,
Y.
,
Pahr
,
D.
, and
Philippe
Zysset
, 2009, “
Smoothed Voxel-Based Mesh for Patient-Specific Finite Element Models of Human Vertebral Bodies
,”
17th Annual Symposium on Computational Methods in Orthopaedic Biomechanics
,
Las Vegas, NV
, February 28.
22.
Lewis
,
G.
, 1997, “
Properties of Acrylic Bone Cement: State of the Art Review
,”
J. Biomed. Mater. Res.
,
38
(
2
), pp.
155
182
.
23.
Taubin
,
G.
, 2000, “
Geometric Signal Processing on Polygonal Meshes
,” Eurographics: State of the Art Report.
24.
Zysset
,
P. K.
, 2003, “
A Review of Morphology-Elasticity Relationships in Human Trabecular Bone: Theories and Experiments
,”
J. Biomech.
,
36
(
10
), pp.
1469
1485
.
25.
Rincón-Kohli
,
L.
, and
Zysset
,
P.
, 2009, “
Multi-Axial Mechanical Properties of Human Trabecular Bone
,”
Biomech. Model. Mechanobiol.
,
8
(
3
), pp.
195
208
.
26.
Mazza
,
G.
,
Franzoso
,
G.
,
Pretterklieber
,
M.
, and
Zysset
,
P.
, 2008, “
Anisotropic Elastic Properties of Vertebral Compact Bone Measured by Microindentation
,”
European Society of Biomechanics
,
Luzerne
,
Switzerland
.
27.
Hengsberger
,
S.
,
Kulik
,
A.
, and
Zysset
,
P.
, 2002, “
Nanoindentation Discriminates the elastic Properties of Individual Human Bone Lamellae Under Dry and Physiological Con-ditions
,”
Bone
,
30
(
1
), pp.
178
184
.
28.
Garcia
,
D.
,
Zysset
,
P.
,
Charlebois
,
M.
, and
Curnier
,
A.
, 2009, “
A Three-Dimensional Elastic Plastic Damage Constitutive Law for Bone Tissue
,”
Biomech. Model. Mechanobiol.
,
8
(
2
), pp.
149
165
.
29.
Imai
,
K.
,
Ohnishi
,
I.
,
Bessho
,
M.
, and
Nakamura
,
K.
, 2006, “
Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture Site
,”
Spine
,
31
(
16
), pp.
1789
1794
.
30.
Chevalier
,
Y.
,
Pahr
,
D.
,
Charlebois
,
M.
,
Heini
,
P.
,
Schneider
,
E.
, and
Zysset
,
P.
, 2008, “
Cement Distribution, Volume, and Compliance in Vertebroplasty: Some Answers From an Anatomy-Based Nonlinear Finite Element Study
,”
Spine
,
33
(
16
), pp.
1722
1730
.
31.
Sapin
,
E.
,
Chan
,
F.
,
Ayoub
,
G.
,
Roux
,
C.
,
Skalli
,
W.
, and
Mitton
,
D.
, 2009, “
Anterior Bending on Whole Vertebrae Using Controlled Boundary Conditions for Model Validation
,”
J. Musculoskel. Res.
,
12
(
2
), pp.
1
6
.
32.
Dall’Ara
,
E.
,
Schmidt
,
R.
,
Pahr
,
D. H.
,
Varga
,
P.
,
Chevalier
,
Y.
,
Patsch
,
J.
,
Kainberger
,
F.
, and
Zysset
,
P. K.
, 2010, “
A Nonlinear Finite Element Model Validation Study Based on a Novel Experimental Technique for Inducing Anterior Wedge-Shape Fractures in Human Vertebral Bodies in vitro
,”
J Biomech
.
43
(
12
), pp.
2374
2380
.
33.
Matsuura
,
M.
,
Eckstein
,
F.
,
Lochmüller
,
E.-M.
, and
Zysset
,
P. K.
, 2008, “
The Role of Fabric in the Quasi-Static Compressive Mechanical Properties of Human Trabecular Bone From Various Anatomical Locations
,”
Biomech. Model. Mechanobiol.
,
7
(
1
), pp.
27
42
.
You do not currently have access to this content.