Recent magnetic resonance studies have indicated that intraplaque hemorrhage (IPH) may accelerate plaque progression and play an important role in plaque destabilization. However, the impact of hemorrhage on critical plaque wall stress (CPWS) and strain (CPWSn) has yet to be determined. The objective of this study was to assess the effect of the presence and size of IPH on wall mechanics. The magnetic resonance image (MRI) of one patient with histology-confirmed IPH was used to build eight 3D fluid-structure interaction (FSI) models by altering the dimensions of the existing IPH. As a secondary end point, the combined effect of IPH and fibrous cap thickness (FCT) was assessed. A volume curve fitting method (VCFM) was applied to generate a mesh that would guarantee numerical convergence. Plaque wall stress (PWS), strain (PWSn), and flow shear stress (FSS) were extracted from all nodal points on the lumen surface for analysis. Keeping other conditions unchanged, the presence of intraplaque hemorrhage caused a significant increase (27.5%) in CPWS; reduced FCT caused an increase of 22.6% of CPWS. Similar results were found for CPWSn. Furthermore, combination of IPH presence, reduced FCT, and increased IPH volume caused an 85% and 75% increase in CPWS and CPWSn, respectively. These results show that intraplaque hemorrhage has considerable impact on plaque stress and strain conditions and accurate quantification of IPH could lead to more accurate assessment of plaque vulnerability. Large-scale studies are needed to further validate our findings.

References

1.
Carr
,
S.
,
Farb
,
A.
,
Pearce
,
W. H.
,
Virmani
,
R.
, and
Yao
,
J. S.
,
1996
, “
Atherosclerotic Plaque Rupture in Symptomatic Carotid Artery Stenosis
,”
J. Vasc. Surg.
,
23
(
5
), pp.
755
765
.10.1016/S0741-5214(96)70237-9
2.
Naghavi
,
M.
,
Libby
,
P.
,
Falk
,
E.
,
Casscells
,
S. W.
,
Litovsky
,
S.
,
Rumberger
,
J.
,
Badimon
,
J. J.
,
Stefanadis
,
C.
,
Moreno
,
P.
,
Pasterkamp
,
G.
,
Fayad
,
Z.
,
Stone
,
P. H.
,
Waxman
,
S.
,
Raggi
,
P.
,
Madjid
,
M.
,
Zarrabi
,
A.
,
Burke
,
A.
,
Yuan
,
C.
,
Fitzgerald
,
P. J.
,
Siscovick
,
D. S.
,
de Korte
,
C. L.
,
Aikawa
,
M.
,
Juhani Airaksinen
,
K. E.
,
Assmann
,
G.
,
Becker
,
C. R.
,
Chesebro
,
J. H.
,
Farb
,
A.
,
Galis
,
Z. S.
,
Jackson
,
C.
,
Jang
,
I. K.
,
Koenig
,
W.
,
Lodder
,
R. A.
,
March
,
K.
,
Demirovic
,
J.
,
Navab
,
M.
,
Priori
,
S. G.
,
Rekhter
,
M. D.
,
Bahr
,
R.
,
Grundy
,
S. M.
,
Mehran
,
R.
,
Colombo
,
A.
,
Boerwinkle
,
E.
,
Ballantyne
,
C.
,
Insull
,
W.
, Jr.
,
Schwartz
,
R. S.
,
Vogel
,
R.
,
Serruys
,
P. W.
,
Hansson
,
G. K.
,
Faxon
,
D. P.
,
Kaul
,
S.
,
Drexler
,
H.
,
Greenland
,
P.
,
Muller
,
J. E.
,
Virmani
,
R.
,
Ridker
,
P. M.
,
Zipes
,
D. P.
,
Shah
,
P. K.
, and
Willerson
,
J. T.
,
2003
, “
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part I
,”
Circulation
,
108
(
14
), pp.
1664
1672
.10.1161/01.CIR.0000087480.94275.97
3.
Naghavi
,
M.
,
Libby
,
P.
,
Falk
,
E.
,
Casscells
,
S. W.
,
Litovsky
,
S.
,
Rumberger
,
J.
,
Badimon
,
J. J.
,
Stefanadis
,
C.
,
Moreno
,
P.
,
Pasterkamp
,
G.
,
Fayad
,
Z.
,
Stone
,
P. H.
,
Waxman
,
S.
,
Raggi
,
P.
,
Madjid
,
M.
,
Zarrabi
,
A.
,
Burke
,
A.
,
Yuan
,
C.
,
Fitzgerald
,
P. J.
,
Siscovick
,
D. S.
,
de Korte
,
C. L.
,
Aikawa
,
M.
,
Juhani Airaksinen
,
K. E.
,
Assmann
,
G.
,
Becker
,
C. R.
,
Chesebro
,
J. H.
,
Farb
,
A.
,
Galis
,
Z. S.
,
Jackson
,
C.
,
Jang
,
I. K.
,
Koenig
,
W.
,
Lodder
,
R. A.
,
March
,
K.
,
Demirovic
,
J.
,
Navab
,
M.
,
Priori
,
S. G.
,
Rekhter
,
M. D.
,
Bahr
,
R.
,
Grundy
,
S. M.
,
Mehran
,
R.
,
Colombo
,
A.
,
Boerwinkle
,
E.
,
Ballantyne
,
C.
,
Insull
,
W.
, Jr.
,
Schwartz
,
R. S.
,
Vogel
,
R.
,
Serruys
,
P. W.
,
Hansson
,
G. K.
,
Faxon
,
D. P.
,
Kaul
,
S.
,
Drexler
,
H.
,
Greenland
,
P.
,
Muller
,
J. E.
,
Virmani
,
R.
,
Ridker
,
P. M.
,
Zipes
,
D. P.
,
Shah
,
P. K.
, and
Willerson
,
J. T.
,
2003
, “
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part II
,”
Circulation
,
108
(
15
), pp.
1772
1778
.10.1161/01.CIR.0000087481.55887.C9
4.
Saam
,
T.
,
Ferguson
,
M. S.
,
Yarnykh
,
V. L.
,
Takaya
,
N.
,
Xu
,
D.
,
Polissar
,
N. L.
,
Hatsukami
,
T. S.
, and
Yuan
,
C.
,
2005
, “
Quantitative Evaluation of Carotid Plaque Composition by In Vivo MRI
,”
Arterioscler., Thromb., Vasc. Biol.
,
25
(
1
), pp.
234
239
.10.1161/01.ATV.0000155965.54679.79
5.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Beach
,
K. W.
, and
Maravilla
,
K. R.
,
2001
, “
Special Review: Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions
,”
Radiology
,
221
, pp.
285
299
.10.1148/radiol.2212001612
6.
Yuan
,
C.
,
Zhang
,
S. X.
,
Polissar
,
N. L.
,
Echelard
,
D.
,
Ortiz
,
G.
,
Davis
,
J. W.
,
Ellington
,
E.
,
Ferguson
,
M. S.
, and
Hatsukami
,
T. S.
,
2002
, “
Identification of Fibrous Cap Rupture With Magnetic Resonance Imaging is Highly Associated With Recent Transient Ischemic Attack or Stroke
,”
Circulation
,
105
(
2
):
181
185
.10.1161/hc0202.102121
7.
Fuster
,
V.
,
Cornhill
,
J. F.
,
Dinsmore
,
R. E.
,
Fallon
,
J. T.
,
Insull
,
W.
,
Libby
,
P.
,
Nissen
,
S.
,
Rosenfeld
,
M. E.
, and
Wagner
,
W. D.
, eds.,
1998
,
The Vulnerable Atherosclerotic Plaque: Understanding, Identification, and Modification, AHA Monograph Series
,
Futura Publishing
,
Armonk, NY
.
8.
Barnett
,
H. J.
,
Taylor
,
D. W.
,
Eliasziw
,
M.
,
Fox
,
A. J.
,
Ferguson
,
G. G.
,
Haynes
,
R. B.
,
Rankin
,
R. N.
,
Clagett
,
G. P.
,
Hachinski
,
V. C.
,
Sackett
,
D. L.
,
Thorpe
,
K. E.
,
Meldrum
,
H. E.
, and
Spence
,
J. D.
,
1998
, “
Benefit of Carotid Endarterectomy in Patients With Symptomatic Moderate or Severe Stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators
,”
N. Engl. J. Med.
,
339
(
20
), pp.
1415
1425
.10.1056/NEJM199811123392002
9.
Hatsukami
,
T. S.
, and
Yuan
C.
,
2010
, “
MRI in the Early Identification and Classification of High-Risk Atherosclerotic Carotid Plaques
,”
Imaging Med.
,
2
(
1
), pp.
63
75
.10.2217/iim.09.33
10.
Rothwell
,
P. M.
,
Gutnikov
,
S. A.
, and
Warlow
,
C. P.
,
2003
, “
European Carotid Surgery Trialist's Collaboration Reanalysis of the Final Results of the European Carotid Surgery Trial
,”
Stroke
,
34
(
2
), pp.
514
523
.10.1161/01.STR.0000054671.71777.C7
11.
Underhill
,
H. R.
,
Hatsukami
,
T. S.
,
Fayad
,
Z. A.
,
Fuster
,
V.
, and
Yuan
,
C.
,
2010
, “
MRI of Carotid Atherosclerosis: Clinical Implications and Future Directions
,”
Nat. Rev. Cardiol.
,
7
(
3
), pp.
165
173
.10.1038/nrcardio.2009.246
12.
Richardson
,
P. D.
,
Davies
,
M. J.
, and
Born
,
G. V.
,
1989
, “
Influence of Plaque Configuration and Stress Distribution on Fissuring of Coronary Atherosclerotic Plaques
,”
Lancet
,
2
(
8669
), pp.
941
944
.10.1016/S0140-6736(89)90953-7
13.
Cheng
,
G. C.
,
Loree
,
H. M.
,
Kamm
,
R. D.
,
Fishbein
,
M. C.
, and
Lee
,
R. T.
,
1993
, “
Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions. A Structural Analysis With Histopathological Correlation
,”
Circulation
,
87
(
4
), pp.
1179
1187
.10.1161/01.CIR.87.4.1179
14.
Lee
,
R. T.
,
Grodzinsky
,
A. J.
,
Frank
,
E. H.
,
Kamm
,
R. D.
, and
Schoen
,
F. J.
,
1991
, “
Structure-Dependent Dynamic Mechanical Behavior of Fibrous Caps From Human Atherosclerotic Plaques
,”
Circulation
,
83
(
5
), pp.
1764
1770
.10.1161/01.CIR.83.5.1764
15.
Li
,
Z. Y.
,
Howarth
,
S.
,
Trivedi
,
R. A.
,
U-King-Im
,
J. M.
,
Graves
,
M. J.
,
Brown
,
A.
,
Wang
,
L. Q.
, and
Gillard
,
J. H.
,
2006
, “
Stress Analysis of Carotid Plaque Rupture Based on In Vivo High Resolution MRI
,”
J. Biomech.
,
39
, pp.
2611
2622
.10.1016/j.jbiomech.2005.08.022
16.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Stringfellow
,
R. G.
, and
Lee
,
R. T.
,
1992
, “
Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels
,”
Circ. Res.
,
71
, pp.
850
858
.10.1161/01.RES.71.4.850
17.
Teng
,
Z.
,
Sadat
,
U.
,
Li
,
Z. Y.
,
Huang
,
X.
,
Zhu
,
C.
,
Young
,
V. E.
,
Graves
,
M. J.
, and
Gillard
,
J. H.
,
2010
, “
Arterial Luminal Curvature and Fibrous-Cap Thickness Affect Critical Stress Conditions Within Atherosclerotic Plaque: An in vivo MRI-Based 2D Finite-Element Study
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3096
3101
.10.1007/s10439-010-0078-3
18.
Holzapfel
,
G. A.
,
Stadler
,
M.
, and
Schulze-Bause
,
C. A. J.
,
2002
, “
A Layer-Specific Three-Dimensional Model for the Simulation of Balloon Angioplasty Using Magnetic Resonance Imaging and Mechanical Testing
,”
Ann. Biomed. Eng.
,
30
(
6
), pp.
753
767
.10.1114/1.1492812
19.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
,
Saffitz
,
J. E.
, and
Yuan
,
C
,
2004
, “
3D MRI-Based Multicomponent FSI Models for Atherosclerotic Plaques
,”
Ann. Biomed. Eng.
,
32
(
7
), pp.
947
960
.10.1023/B:ABME.0000032457.10191.e0
20.
Bluestein
,
D.
,
Alemu
,
Y.
,
Avrahami
,
I.
,
Gharib
,
M.
,
Dumont
,
K.
,
Ricotta
,
J. J.
, and
Einav
,
S.
,
2008
, “
Influence of Microcalcifications on Vulnerable Plaque Mechanics Using FSI Modeling
,”
J. Biomech.
,
41
(
5
), pp.
1111
1118
.10.1016/j.jbiomech.2007.11.029
21.
Tang
,
D.
,
Teng
,
Z.
,
Canton
,
G.
,
Hatsukami
,
T. S.
,
Dong
,
L.
,
Huang
,
X.
, and
Yuan
,
C.
,
2009
, “
Local Critical Stress Correlates Better Than Global Maximum Stress With Plaque Morphological Features Linked to Atherosclerotic Plaque Vulnerability: An In Vivo Multi-Patient Study
,”
Biomed. Eng. Online
,
8
:15.10.1186/1475-925X-8-15
22.
Tang
,
D.
,
Teng
,
Z.
,
Canton
,
G.
,
Yang
,
C.
,
Ferguson
,
M.
,
Huang
,
X.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Yuan
,
C.
,
2009
, “
Sites of Rupture in Human Atherosclerotic Carotid Plaques are Associated With High Structural Stresses: An In Vivo MRI-Based 3D Fluid-Structure Interaction Study
,”
Stroke
,
40
(
10
), pp.
3258
3263
.10.1161/STROKEAHA.109.558676
23.
Teng
,
Z.
,
Canton
,
G.
,
Yuan
,
C.
,
Ferguson
,
M.
,
Yang
,
C.
,
Huang
,
X.
,
Zheng
,
J.
,
Woodard
,
P. K.
, and
Tang
,
D.
,
2010
, “
3D Critical Plaque Wall Stress is a Better Predictor of Carotid Plaque Rupture Sites Than Flow Shear Stress: An In Vivo MRI-Based 3D FSI Study
,”
J. Biomech. Eng.
,
132
(
3
), p.
031007
.10.1115/1.4001028
24.
Leach
,
J. R.
,
Rayz
,
V. L.
,
Soares
,
B.
,
Wintermark
,
M.
,
Mofrad
,
M. R.
, and
Saloner
,
D.
,
2010
, “
Carotid Atheroma Rupture Observed In Vivo and FSI Predicted Stress Distribution Based on Pre-Rupture Imaging
,”
Ann. Biomed. Eng.
,
38
(
8
), pp.
2748
2765
.10.1007/s10439-010-0004-8
25.
Gao
,
H.
,
Long
,
Q.
,
Kumar Das
,
S.
,
Halls
,
J.
,
Graves
,
M.
,
Gillard
,
J. H.
, and
Li
,
Z. Y.
,
2011
, “
Study of Carotid Arterial Plaque Stress for Symptomatic and Asymptomatic Patients
,”
J. Biomech.
,
44
(
14
), pp.
2551
2557
.10.1016/j.jbiomech.2011.07.012
26.
Takaya
,
N.
,
Yuan
,
C.
,
Chu
,
B.
,
Saam
,
T.
,
Polissar
,
N. L.
,
Jarvik
,
G. P.
,
Isaac
,
C.
,
McDonough
,
J.
,
Natiello
,
C.
,
Small
,
R.
,
Ferguson
,
M. S.
,
Hatsukami
,
T. S.
,
2005
, “
Presence of Intraplaque Hemorrhage Stimulates Progression of Carotid Atherosclerotic Plaques: A High-Resolution Magnetic Resonance Imaging Study
,”
Circulation
,
111
(
21
), pp.
2768
2775
.10.1161/CIRCULATIONAHA.104.504167
27.
Takaya
,
N.
,
Yuan
,
C.
,
Chu
,
B. B.
,
Saam
,
T.
,
Underhill
,
H.
,
Cai
,
J.
,
Tran
,
N.
,
Polissar
,
N. L.
,
Isaac
,
C.
,
Ferguson
,
M. S.
,
Garden
,
G. A.
,
Cramer
,
S. C.
,
Maravilla
,
K. R.
,
Hashimoto
,
B.
, and
Hatsukami
,
T. S.
,
2006
, “
Association Between Carotid Plaque Characteristics and Subsequent Ischemic Cerebrovascular Events: A Prospective Assessment With MRI–Initial Results
,”
Stroke
,
37
(
3
), pp.
818
823
.10.1161/01.STR.0000204638.91099.91
28.
Chu
,
B.
,
Kampschulte
,
A.
,
Ferguson
,
M. S.
,
Kerwin
,
W. S.
,
Yarnykh
,
V. L.
,
O'Brien
,
K. D.
,
Polissar
,
N. L.
,
Hatsukami
,
T. S.
, and
Yuan
,
C.
,
2004
, “
Hemorrhage in the Atherosclerotic Carotid Plaque: A High-Resolution MRI Study
,”
Stroke
,
35
(
5
), pp.
1079
1084
.10.1161/01.STR.0000125856.25309.86
29.
Sadat
,
U.
,
Teng
,
Z.
,
Young
,
V. E.
,
Zhu
,
C.
,
Tang
,
T. Y.
,
Graves
,
M. J.
, and
Gillard
,
J. H.
,
2011
, “
Impact of Plaque Haemorrhage and its Age on Structural Stresses in Atherosclerotic Plaques of Patients With Carotid Artery Disease: An MR Imaging-Based Finite Element Simulation Study
,”
Int. J. Cardiovasc. Imaging
,
27
(
3
), pp.
397
402
.10.1007/s10554-010-9679-z
30.
Huang
,
X.
,
Teng
,
Z.
,
Canton
,
G.
,
Ferguson
,
M.
,
Yuan
,
C.
, and
Tang
,
D.
,
2010
, “
Intraplaque Hemorrhage is Associated With Higher Structural Stresses in Human Atherosclerotic Plaques: An In Vivo MRI-Based 3D Fluid-Structure Interaction Study
,”
Biomed. Eng. Online
,
9
:86.10.1186/1475-925X-9-86
31.
Mitsumori
,
L. M.
,
Hatsukami
,
T. S.
,
Ferguson
,
M. S.
,
Kerwin
,
W. S.
,
Cai
,
J.
, and
Yuan
,
C.
,
2003
, “
In Vivo Accuracy of Multisequence MR Imaging for Identifying Unstable Fibrous Caps in Advanced Human Carotid Plaques
,”
J. Magn. Reson. Imaging
,
17
(
4
), pp.
410
420
.10.1002/jmri.10264
32.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Ferguson
,
M. S.
,
Polissar
,
N. L.
,
Echelard
,
D.
,
Ortiz
,
G.
,
Small
,
R.
,
Davies
,
J. W.
,
Kerwin
,
W. S.
, and
Hatsukami
,
T. S.
,
2001
, “
In Vivo Accuracy of Multispectral Magnetic Resonance Imaging for Identifying Lipid-Rich Necrotic Cores and Intraplaque Hemorrhage in Advanced Human Carotid Plaques
,”
Circulation
,
104
(
17
), pp.
2051
2056
.10.1161/hc4201.097839
33.
Chu
,
B.
,
Yuan
,
C.
,
Takaya
,
N.
,
Shewchuk
,
J. R.
,
Clowes
,
A. W.
, and
Hatsukami
,
T. S.
,
2006
, “
Images in Cardiovascular Medicine. Serial High-Spatial-Resolution, Multisequence Magnetic Resonance Imaging Studies Identify Fibrous Cap Rupture and Penetrating Ulcer Into Carotid Atherosclerotic Plaque
,”
Circulation
,
113
(
12
), pp.
e660
e661
.10.1161/CIRCULATIONAHA.105.567255
34.
Hatsukami
,
T. S.
,
Ross
,
R.
,
Polissar
,
N. L.
, and
Yuan
,
C.
,
2000
, “
Visualization of Fibrous Cap Thickness and Rupture in Human Atherosclerotic Carotid Plaque In Vivo With High-Resolution Magnetic Resonance Imaging
,”
Circulation
,
102
(
9
), pp.
959
964
.10.1161/01.CIR.102.9.959
35.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Beach
,
K. W.
, and
Maravilla
,
K. R.
,
2001
, “
Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions
,”
Radiology
,
221
(
2
), pp.
285
299
.10.1148/radiol.2212001612
36.
Yang
,
C.
,
Tang
,
D.
,
Yuan
,
C.
,
Hatsukami
,
T. S.
,
Zheng
,
J.
, and
Woodard
,
P. K.
,
2007
, “
In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared With Fluid/Wall-Only Models
,”
Comput. Model. Eng. Sci.
,
19
(
3
), pp.
233
246
.
37.
Bathe
,
K. J.
,
2002
,
Theory and Modeling Guide
,
ADINA R&D, Inc.
,
Watertown, MA
.
38.
Tang
,
D.
,
Yang
,
C.
,
Mondal
,
S.
,
Liu
,
F.
,
Canton
,
G.
,
Hatsukami
,
T. S.
, and
Yuan
,
C.
,
2008
, “
A Negative Correlation Between Human Carotid Atherosclerotic Plaque Progression and Plaque Wall Stress: In Vivo MRI-Based 2D/3D FSI Models
,”
J. Biomech.
,
41
(
4
), pp.
727
736
.10.1016/j.jbiomech.2007.11.026
39.
Aglyamov
,
S. R.
,
Skovoroda
,
A. R.
,
Xie
,
H.
,
Kim
,
K.
,
Rubin
,
J. M.
,
O'Donnell
,
M.
,
Wakefield
,
T. W.
,
Myers
,
D.
, and
Emelianov
,
S. Y.
,
2007
, “
Model-Based Reconstructive Elasticity Imaging Using Ultrasound
,”
Int. J. Biomed. Imaging
,
2007
, Paper No.
35830
.10.1155/2007/35830
40.
Huang
,
X.
,
Yang
,
C.
,
Yuan
,
C.
,
Liu
,
F.
,
Canton
,
G.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
, and
Tang
,
D.
,
2002
, “
Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on In Vivo MRI Data
,”
Mol. Cell Biomech.
,
6
(
2
), pp.
121
134
.
41.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
,
Zheng
,
J.
, and
Vito
,
R. P.
,
2003
, “
Effect of Stenosis Asymmetry on Blood Flow and Artery Compression: A Three-Dimensional Fluid-Structure Interaction Model
,”
Ann. Biomed. Eng.
,
31
(
10
), pp.
1182
1193
.10.1114/1.1615577
42.
Michel
,
J. B.
,
Virmani
,
R.
,
Arbustini
,
E.
, and
Pasterkamp
,
G.
,
2011
, “
Intraplaque Haemorrhages as the Trigger of Plaque Vulnerability
,”
Eur. Heart J.
,
32
(
16
), pp.
1977
1985
.10.1093/eurheartj/ehr054
43.
Yuan
,
C.
,
Mitsumori
,
L. M.
,
Beach
,
K. W.
, and
Maravilla
,
K. R.
,
2011
, “
Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions
,”
Radiology
,
221
(
2
), pp.
285
299
.10.1148/radiol.2212001612
44.
Groen
,
H. C.
,
Gijsen
,
F. J.
,
van der Lugt
,
A.
,
Ferguson
,
M. S.
,
Hatsukami
,
T. S.
,
van der Steen
,
A. F.
,
Yuan
,
C.
, and
Wentzel
,
J. J.
,
2007
, “
Plaque Rupture in the Carotid Artery is Localized at the High Shear Stress Region: A Case Report
,”
Stroke
,
38
, pp.
2379
2381
.10.1161/STROKEAHA.107.484766
45.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in The Human Carotid Bifurcation: Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arterioscl., Thromb., Vasc. Biol.
,
5
, pp.
293
302
.10.1161/01.ATV.5.3.293
You do not currently have access to this content.