The photoselective vaporization of prostate (PVP) green light (532 nm) laser is increasingly being used as an alternative to the transurethral resection of prostate (TURP) for treatment of benign prostatic hyperplasia (BPH) in older patients and those who are poor surgical candidates. In order to achieve the goals of increased tissue removal volume (i.e., “ablation” in the engineering sense) and reduced collateral thermal damage during the PVP green light treatment, a two dimensional computational model for laser tissue ablation based on available parameters in the literature has been developed and compared to experiments. The model is based on the control volume finite difference and the enthalpy method with a mechanistically defined energy necessary to ablate (i.e., physically remove) a volume of tissue (i.e., energy of ablation Eab). The model was able to capture the general trends experimentally observed in terms of ablation and coagulation areas, their ratio (therapeutic index (TI)), and the ablation rate (AR) (mm3/s). The model and experiment were in good agreement at a smaller working distance (WD) (distance from the tissue in mm) and a larger scanning speed (SS) (laser scan speed in mm/s). However, the model and experiment deviated somewhat with a larger WD and a smaller SS; this is most likely due to optical shielding and heat diffusion in the laser scanning direction, which are neglected in the model. This model is a useful first step in the mechanistic prediction of PVP based BPH laser tissue ablation. Future modeling efforts should focus on optical shielding, heat diffusion in the laser scanning direction (i.e., including 3D effects), convective heat losses at the tissue boundary, and the dynamic optical, thermal, and coagulation properties of BPH tissue.

References

1.
McConnell
,
J.
,
Barry
,
M.
,
Bruskewitz
,
R.
,
Bueschen
,
A.
,
Denton
,
S.
, and
Holtgrewe
,
H.
, 1994, “
Benign Prostatic Hyperplasia: Diagnosis and Treatment, Clinical Practice Guideline No. 8, Ahcpr Publication No. 94-0582. Rockville, Maryland: Agency for Healthcare Policy and Research
,” Public Health Service, US Department of Health and Human Services.
2.
Miano
,
R.
,
De Nunzio
,
C.
,
Asimakopoulos
,
A.
,
Germani
,
S.
,
Tubaro
,
A.
, and
Surgery
,
L.
, 2008, “
Treatment Options for Benign Prostatic Hyperplasia in Older Men
,”
Med. Sci. Monit.
,
14
(
7
), p.
102
.
3.
Lourenco
,
T.
,
Pickard
,
R.
,
Vale
,
L.
,
Grant
,
A.
,
Fraser
,
C.
,
Maclennan
,
G.
, and
N’dow
,
J.
, 2008, “
Minimally Invasive Treatments for Benign Prostatic Enlargement: Systematic Review of Randomised Controlled Trials
,”
Br. Med. J.
,
337
, p.
a1662
.
4.
Costello
,
A.
,
Johnson
,
D.
, and
Bolton
,
D.
, 1992, “
Nd: Yag Laser Ablation of the Prostate as a Treatment for Benign Prostatic Hypertrophy
,”
Lasers Surg. Med.
,
12
(
2
), p.
121
.
5.
Tan
,
A.
, and
Gilling
,
P.
, 2005, “
Lasers in the Treatment of Benign Prostatic Hyperplasia: An Update
,”
Curr. Opin. Urology
,
15
(
1
), p.
55
.
6.
Malek
,
R.
, 2006, “
Photoselective KTP Laser Vaporization of Obstructive BPH (PVP)
,”
Interv. Manage. Urol. Dis.
,
8
, pp.
103
122
.
7.
Hoffman
,
R.
,
Macdonald
,
R.
,
Slaton
,
J.
, and
Wilt
,
T.
, 2003, “
Laser Prostatectomy versus Transurethral Resection for Treating Benign Prostatic Obstruction: A Systematic Review
,”
J. Urol.
,
169
(
1
), pp.
210
215
.
8.
Seki
,
N.
,
Mochida
,
O.
,
Kinukawa
,
N.
,
Sagiyama
,
K.
, and
Naito
,
S.
, 2003, “
Holmium Laser Enucleation for Prostatic Adenoma: Analysis of Learning Curve Over the Course of 70 Consecutive Cases
,”
J. Urol.
,
170
(
5
), pp.
1847
1850
.
9.
Malek
,
R.
, 2008, “
Greenlight (Tm) Hps Laser Therapy for BPH: Clinical Outcomes and Surgical Recommendations From the International Greenlight User (IGLU) Group
,”
Eur. Urol. Suppl.
,
7
(
4
), pp.
361
362
.
10.
Malek
,
R. S.
,
Kang
,
H. W.
,
Coad
,
J. E.
, and
Koullick
,
E.
, 2009, “
Greenlight Photoselective 120-Watt 532-Nm Lithium Triborate Laser Vaporization Prostatectomy in Living Canines
,”
J. Endourol.
,
23
(5)
pp.
837
845
.
11.
Kang
,
H.
,
Jebens
,
D.
,
Malek
,
R.
,
Mitchell
,
G.
, and
Koullick
,
E.
, 2008, “
Laser Vaporization of Bovine Prostate: A Quantitative Comparison of Potassium-Titanyl-Phosphate and Lithium Triborate Lasers
,”
J. Urol.
,
180
(
6
), pp.
2675
2680
.
12.
Vogel
,
A.
, and
Venugopalan
,
V.
, 2003, “
Mechanisms of Pulsed Laser Ablation of Biological Tissues
,”
Chem. Rev.
,
103
(
5
), pp.
2079
2079
.
13.
Vogel
,
A.
, and
Venugopalan
,
V.
, 2003, “
Mechanisms of Pulsed Laser Ablation of Biological Tissues
,”
Chem. Rev.
,
103
(2)
, pp.
577
644
.
14.
Dubey
,
A. K.
, and
Yadava
,
V.
, 2008, “
Laser Beam Machining—A Review
,”
Int. J. Mach. Tools Manuf.
,
48
(
6
), pp.
609
628
.
15.
Modest
,
M. F.
, 1996, “
Three-Dimensional, Transient Model for Laser Machining of Ablating Decomposing Materials
,”
Int. J. Heat Mass Transfer
,
39
(
2
), pp.
221
234
.
16.
Ozicik
,
M. N.
, 1980,
Heat Conduction
, 2nd ed.,
John Wiley
,
NY
, p.
611
.
17.
Dabby
,
F.
, and
Paek
,
U. C.
, 1972, “
High-Intensity Laser-Induced Vaporization and Explosion of Solid Material
,”
IEEE J. Quantum Electron.
,
8
(
2 Part 1
), pp.
106
111
.
18.
Miotello
,
A.
, and
Kelly
,
R.
, 1995, “
Critical Assessment of Thermal Models for Laser Sputtering at High Fluences
,”
Appl. Phys. Lett.
,
67
(
24
), pp.
3535
3537
.
19.
Gerstmann
,
M.
,
Sagi-Dolev
,
A.
,
Avidor-Zehavi
,
A.
,
Katzir
,
A.
, and
Akselrod
,
S.
, 1993, “
Model Simulation of Biological Damage in Tissue Exposed to CO2 Laser Irradiation
,”
Opt. Eng.
,
32
, pp.
291
297
.
20.
Sagi-Dolev
,
A.
,
Shitzer
,
A.
,
Katzir
,
A.
, and
Akselrod
,
S.
, 1992, “
Heating of Biological Tissue by Laser Irradiation: Theoretical Model
,”
Opt. Eng.
,
31
(
7
), pp.
1417
1424
.
21.
McKenzie
,
A.
, 1983, “
How Far Does Thermal Damage Extend Beneath the Surface of CO2 Laser Incisions
,”
Phys. Med. Biol.
,
28
(
8
), pp.
905
912
.
22.
McKenzie
,
A.
, 1986, “
A Three-Zone Model of Soft-Tissue Damage by a CO2 Laser
,”
Phys. Med. Biol.
,
31
(
9
), pp.
967
983
.
23.
McKenzie
,
A. L.
, 1990, “
Physics of Thermal-Processes in Laser Tissue Interaction
,”
Phys. Med. Biol.
,
35
(
9
), pp.
1175
1209
.
24.
Venugopalan
,
V.
,
Nishioka
,
N. S.
, and
Mikic
,
B. B.
, 1994, “
The Effect of Laser Parameters on the Zone of Thermal-Injury Produced by Laser-Ablation of Biological Tissue
,”
ASME J. Biomech. Eng.
,
116
(
1
), pp.
62
70
.
25.
Frenz
,
M.
,
Romano
,
V.
,
Zweig
,
Y.
, and
Weber
,
H.
, 1989, “
Instabilities in Laser Cutting of Soft Tissue
,”
J. Appl. Phys.
,
66
(
9
), pp.
4496
4503
.
26.
Majaron
,
B.
,
Plestenjak
,
P.
, and
Lukac
,
M.
, 1999, “
Thermo-Mechanical Laser Ablation of Soft Biological Tissue: Modeling the Micro-Explosions
,”
Appl. Phys. B: Lasers Opt.
,
69
(
1
), pp.
71
80
.
27.
Martynyuk
,
M.
, 1974, “
Thermodynamics of Explosive Boiling
,”
Sov. Phys. Tech. Phys.
,
19
, pp.
793
797
.
28.
Cummings
,
J. P.
, and
Walsh
,
J. T.
, 1992, “
Q-Switched Laser Ablation of Tissue: Plume Dynamics and the Effect of Tissue Mechanical Properties
,”
Proc. SPIE Int. Soc. Opt. Eng.
,
1646
, pp.
242
253
.
29.
Cummings
,
J. P.
, and
Walsh
,
J. T.
, 1993, “
Tissue Tearing Caused by Pulsed Laser-Induced Ablation Pressure
,”
Appl. Opt
,
32
(
4
), pp.
494
503
.
30.
Walsh
,
J.
, Jr.
, and
Deutsch
,
T.
, 1989, “
Pulsed Co/Sub 2/Laser Ablation of Tissue: Effect of Mechanical Properties
,”
IEEE Trans. Biomed. Eng.
,
36
(
12
), pp.
1195
1201
.
31.
Nilsson
,
A.
,
Berg
,
R.
, and
Andersson-Engels
,
S.
, 1995, “
Measurements of the Optical Properties of Tissue in Conjunction With Photodynamic Therapy
,”
Appl. Opt.
,
34
(
21
), pp.
4609
4619
.
32.
Xu
,
L.
,
Zhu
,
L.
, and
Holmes
,
K.
, 2006, “
Blood Perfusion Measurements in the Canine Prostate During Transurethral Hyperthermia
,”
Ann. N. Y. Acad. Sci.
,
858
, pp.
21
29
.
33.
Laughlin
,
M.
, 1987, “
Skeletal Muscle Blood Flow Capacity: Role of Muscle Pump in Exercise Hyperemia
,”
Am. J. Physiol. Heart Circ. Physiol.
,
253
(
5
), pp.
H993
.
34.
Trakic
,
A.
,
Crozier
,
S.
, and
Liu
,
F.
, 2004, “
Numerical Modelling of Thermal Effects in Rats Due to High-Field Magnetic Resonance Imaging (0.5–1 GHz)
,”
Phys. Med. Biol.
,
49
, p.
5547
.
35.
Wenger
,
C.
, 1972, “
Heat of Evaporation of Sweat: Thermodynamic Considerations
,”
J. Appl. Physiol.
,
32
(
4
), p.
456
.
36.
Spector
,
D. A.
,
Yang
,
Q.
, and
Wade
,
J. B.
, 2007, “
High Urea and Creatinine Concentrations and Urea Transporter B in Mammalian Urinary Tract Tissues
,”
Am. J. Physiol. Renal. Physiol.
,
292
(1)
, pp.
F467
F474
.
37.
Welch
,
A.
, and
Van Gemert
,
M.
, 1995,
Optical-Thermal Response of Laser-Irradiated Tissue
,
Plenum
,
New York
,
38.
Ritchie
,
K.
,
Keller
,
B.
,
Syed
,
K.
, and
Lepock
,
J.
, 1994, “
Hyperthermia (Heat Shock)-Induced Protein Denaturation in Liver, Muscle and Lens Tissue as Determined by Differential Scanning Calorimetry
,”
Int. J. Hyperthermia
,
10
(
5
), pp.
605
618
.
39.
Wagner
,
J.
, and
Anon
,
M.
, 1985, “
Denaturation Kinetics of Myofibrillar Proteins in Bovine Muscle
,”
J. Food Sci.
,
50
(
6
), pp.
1547
1550
.
40.
Wright
,
D.
, and
Wilding
,
P.
, 1984, “
Differential Scanning Calorimetric Study of Muscle and Its Proteins: Myosin and Its Subfragments
,”
J. Sci. Food Agric.
,
35
(
3
), pp.
357
372
.
41.
Stabursvik
,
E.
, and
Martens
,
H.
, 1980, “
Thermal Denaturation of Proteins in Post Rigor Muscle Tissue as Studied by Differential Scanning Calorimetry
,”
J. Sci. Food Agric.
,
31
(
10
), pp.
1034
1042
.
42.
Esenaliev
,
R.
,
Karabutov
,
A.
,
Podymova
,
N.
, and
Letokhov
,
V.
, 1994, “
Laser Ablation of Aqueous Solutions With Spatially Homogeneous and Heterogeneous Absorption
,”
Appl. Phys. B: Lasers Opt.
,
59
(
1
), pp.
73
81
.
43.
Walsh
,
J. T.
, and
Deutsch
,
T. F.
, 1989, “
Pulsed CO2-Laser Ablation of Tissue—Effect of Mechanical-Properties
,”
IEEE Trans. Biomed. Eng.
,
36
(
12
), pp.
1195
1201
.
44.
Kovanen
,
V.
,
Suominen
,
H.
, and
Heikkinen
,
E.
, 1984, “
Mechanical Properties of Fast and Slow Skeletal Muscle With Special Reference to Collagen and Endurance Training
,”
J. Biomech.
,
17
(
10
), pp.
725
727
.
45.
Boulnois
,
J.
, 1986, “
Photophysical Processes in Recent Medical Laser Developments: A Review
,”
Lasers Med. Sci.
,
1
(
1
), pp.
47
66
.
46.
Peng
,
Q.
,
Juzeniene
,
A.
,
Chen
,
J.
,
Svaasand
,
L.
,
Warloe
,
T.
,
Giercksky
,
K.
, and
Moan
,
J.
, 2008, “
Lasers in Medicine
,”
Rep. Prog. Phys.
,
71
(
5
), pp.
56701
56900
.
47.
Niemz
,
M.
, 2004,
Laser-Tissue Interactions: Fundamentals and Applications
,
Springer Verlag
,
Berlin
.
48.
Venugopalan
,
V.
,
Nishioka
,
N. S.
, and
Mikic
,
B. B.
, 1996, “
Thermodynamic Response of Soft Biological Tissues to Pulsed Infrared-Laser Irradiation
,”
Biophys. J.
,
70
(
6
), pp.
2981
2993
.
49.
Kang
,
H.
,
Kim
,
J.
, and
Peng
,
Y.
, 2010, “
In Vitro Investigation of Wavelength-Dependent Tissue Ablation: Laser Prostatectomy Between 532 Nm and 2.01 μM
,”
Lasers Surg. Med.
,
42
(
3
), pp.
237
244
.
You do not currently have access to this content.