Accurate modeling of arterial elasticity is imperative for predicting pulsatile blood flow and transport to the periphery, and for evaluating the mechanical microenvironment of the vessel wall. The goal of the present study is to compare a recently developed structural model of porcine left anterior descending artery media to two commonly used typical representatives of phenomenological and structure-motivated invariant-based models, in terms of the number of model parameters, model descriptive and predictive powers, and requisite different test protocols for reliable parameter estimation. The three models were compared against 3D data of radial inflation, axial extension, and twist tests. Also checked are the models predictive capabilities to response data not used for estimation, including both tests outside the range of estimation database, as well as protocols of a different nature. The results show that the descriptive estimation error (model fit to estimation database), measured by the sum of squared residuals (SSE) between full 3D data and model predictions, was about twice as low for the structural (4.58%) model compared to the other two (9.71 and 8.99% for the phenomenological and structure-motivated models, respectively). Similar SSE ratios were obtained for the predictive capabilities. Prediction SSE at high stretch based on estimation of two low stretches yielded an SSE value of 2.81% for the structural model, and 10.54% and 7.87% for the phenomenological and structure-motivated models, respectively. For the prediction of twist from inflation-extension data, SSE values for the torsional stiffness was 1.76% for the structural model and 39.62 and 2.77% for the phenomenological and structure-motivated models. The required number of model parameters for the structural model is four, whereas the phenomenological model requires six to nine and the structure-motivated has four parameters. These results suggest that modeling based on the tissue structural features improves model reliability in describing given data and in predicting the tissue general response.

References

1.
Doyle
,
J. M.
, and
Dobrin
,
P. B.
, 1971, “
Finite Deformation Analysis of the Relaxed and Contracted Dog Carotid Artery
,”
Microvasc. Res.
,
3
, pp.
400
415
.
2.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
, 2005, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
, pp.
H2048
2058
.
3.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
4.
Vito
,
R. P.
, and
Dixon
,
S. A.
, 2003, “
Blood Vessel Constitutive Models—1995–2002
,”
Annu. Rev. Biomed. Eng.
,
5
, pp.
413
439
.
5.
von Maltzahn
,
W. W.
,
Warriyar
,
R. G.
, and
Keitzer
,
W. F.
, 1984, “
Experimental Measurements of Elastic Properties of Media and Adventitia of Bovine Carotid Arteries
,”
J. Biomech.
,
17
, pp.
839
847
.
6.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
D. J.
, 1968, “
Compressibility of the Arterial Wall
,”
Circ. Res.
,
23
, pp.
61
68
.
7.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1984, “
Compressibility and Constitutive Equation of Arterial Wall in Radial Compression Experiments
,”
J. Biomech.
,
17
, pp.
35
40
.
8.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1983, “
Three-Dimensional Stress Distribution in Arteries
,”
J. Biomech. Eng.
,
105
, pp.
268
274
.
9.
Demiray
,
H.
, 1991, “
A Layered Cylindrical Shell Model for an Aorta
,”
Int. J. Eng. Sci.
,
29
, pp.
47
54
.
10.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
, 1979, “
Pseudoelasticity of Arteries and the Choice of its Mathematical Expression
,”
Am. J. Physiol. Heart Circ. Physiol.
,
237
, pp.
H620
H631
.
11.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1989, “
Change of Residual Strains in Arteries due to Hypertrophy Caused by Aortic Constriction
,
Circ. Res.
,
65
, pp.
1340
1349
.
12.
Greenwald
,
S. E.
,
Moore
,
J.
, Jr.
,
Rachev
,
A.
,
Kane
,
T. P.
, and
Meister
,
J. J.
, 1997, “
Experimental Investigation of the Distribution of Residual Strains in the Artery Wall
,”
J. Biomech. Eng.
,
119
, pp.
438
444
.
13.
Humphrey
,
J. D.
, 1995, “
Mechanics of the Arterial Wall: Review and Directions
,”
Crit. Rev. Biomed. Eng.
,
23
, pp.
1
162
.
14.
Lu
,
X.
,
Pandit
,
A.
, and
Kassab
G. S.
, 2004, “
Biaxial Incremental Homeostatic Elastic Moduli of Coronary Artery: Two-Layer Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
, pp.
H1663
1669
.
15.
Pandit
,
A.
,
Lu
,
X.
,
Wang
,
C.
, and
Kassab
,
G. S.
, 2005, “
Biaxial Elastic Material Properties of Porcine Coronary Media and Adventitia
, “
Am. J. Physiol. Heart Circ. Physiol.
,
288
, pp.
H2581
2587
.
16.
Schulze-Bauer
,
C. A.
, and
Holzapfel
,
G. A.
, 2003, “
Determination of Constitutive Equations for Human Arteries From Clinical Data
,”
J. Biomech.
,
36
, pp.
165
169
.
17.
Takamizawa
,
K.
, and
Hayashi
,
K.
, 1987, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
, pp.
7
17
.
18.
von Maltzahn
,
W. W.
,
Besdo
,
D.
, and
Wiemer
,
W.
, 1981, “
Elastic Properties of Arteries: A Nonlinear Two-Layer Cylindrical Model
,”
J. Biomech.
,
14
, pp.
389
397
.
19.
Wang
,
C.
,
Garcia
,
M.
,
Lu
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
, 2006, “
Three-Dimensional Mechanical Properties of Porcine Coronary Arteries: A Validated Two-Layer Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
291
, pp.
H1200
1209
.
20.
Zhang
,
W.
,
Wang
,
C.
, and
Kassab
,
G. S.
, 2007, “
The Mathematical Formulation of a Generalized Hooke’s Law for Blood Vessels
,”
Biomaterials
,
28
, pp.
3569
3578
.
21.
Clark
,
J. M.
, and
Glagov
,
S.
, 1979, “
Structural Integration of the Arterial Wall. I. Relationships and Attachments of Medial Smooth Muscle Cells in Normally Distended and Hyperdistended Aortas
,”
Lab. Invest.
,
40
, pp.
587
602
.
22.
Clark
,
J. M.
, and
Glagov
,
S.
, “
Transmural Organization of the Arterial Media. The Lamellar Unit Revisited
,”
Arteriosclerosis
,
5
, pp.
19
34
(1985).
23.
Wasano
,
K.
, and
Yamamoto
,
T.
, 1983, “
Tridimensional Architecture of Elastic Tissue in the Rat Aorta and Femoral Artery—A Scanning Electron Microscope Study
,”
J. Electron Microsc.
,
32
, pp.
33
44
.
24.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2005, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
, pp.
15
35
.
25.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2004, “
Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability
,”
J. Biomech. Eng.
,
126
, pp.
264
275
.
26.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
, 2002, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Simulation
,”
Eur. J. Mech. A: Solids
,
21
, pp.
441
463
.
27.
Zulliger
,
M. A.
,
Rachev
,
A.
, and
Stergiopulos
,
N.
, 2004, “
A Constitutive Formulation of Arterial Mechanics Including Vascular Smooth Muscle Tone
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
, pp.
H1335
1343
.
28.
Lanir
,
Y.
, 1983, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
, pp.
1
12
.
29.
Lanir
,
Y.
, “
A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collagenous Tissues
,”
J. Biomech.
12
, pp.
423
436
(1979).
30.
Lanir
,
Y.
, 1978, “
Structure-Function Relations in Mammalian Tendon: The Effect of Geometrical Nonuniformity
,”
J. Bioeng.
,
2
, pp.
119
128
.
31.
Sverdlik
,
A.
, and
Lanir
,
Y.
, 2002, “
Time-Dependent Mechanical Behavior of Sheep Digital Tendons, Including the Effects of Preconditioning
,”
J. Biomech. Eng.
,
124
, pp.
78
84
.
32.
Lokshin
,
O.
, and
Lanir
,
Y.
, 2009, “
Micro and Macro Rheology of Planar Tissues
,”
Biomater.
,
30
(
17
), pp.
3118
3127
.
33.
Lokshin
,
O.
, and
Lanir
,
Y.
, 2009, “
Viscoelasticity and Preconditioning of Rat Skin Under Uniaxial Stretch: Microstructural Constitutive Characterization
,”
J. Biomech. Eng.
,
131
, p.
031009
.
34.
Horowitz
,
A.
,
Lanir
,
Y.
,
Yin
,
F. C.
,
Perl
,
M.
,
Sheinman
,
I.
, and
Strumpf
,
R. K.
, 1988, “
Structural Three-Dimensional Constitutive Law for the Passive Myocardium
,”
J. Biomech. Eng.
110
, pp.
200
207
.
35.
Nevo
,
E.
, and
Lanir
,
Y.
, 1989, “
Structural Finite Deformation Model of the Left Ventricle During Diastole and Systole
,”
J. Biomech. Eng.
,
111
, pp.
342
349
.
36.
Billiar
,
K. L.
, and
Sacks
,
M. S.
, 1997, “
A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
,
30
, pp.
753
756
.
37.
Engelmayr
,
G. C.
Jr.
, and
Sacks
,
M. S.
, 2006, “
A Structural Model for the Flexural Mechanics of Nonwoven Tissue Engineering Scaffolds
,”
J. Biomech. Eng.
,
128
, pp.
610
622
.
38.
Sacks
,
M. S.
, 2003, “
Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues
,”
J. Biomech. Eng.
,
125
, pp.
280
287
.
39.
Sacks
,
M. S.
,
Lam
,
T. V.
, and
Mayer
,
J. E.
, Jr.
, 2004, “
A Structural Constitutive Model for the Native Pulmonary Valve
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
,
5
, pp.
3734
3736
.
40.
Roach
,
M. R.
, and
Burton
,
A. C.
, 1957, “
The Reason for the Shape of the Distensibility Curves of Arteries
,”
Can. J. Biochem. Physiol.
,
35
, pp.
681
690
.
41.
Azuma
,
T.
, and
Hasegawa
,
M.
, 1971, “
A Rheological Approach to the Architecture of Arterial Walls
,”
Jpn. J. Physiol.
,
21
, pp.
27
47
.
42.
Azuma
,
T.
, and
Oka
,
S.
, 1971, “
Mechanical Equilibrium of Blood Vessel Walls
,”
Am. J. Physiol.
,
221
, pp.
1310
1318
.
43.
Oka
,
S.
, and
Azuma
,
T.
, 1970, “
Physical Theory of Tension in Thick-Walled Blood Vessels in Equilibrium
,”
Biorheology
,
7
, pp.
109
117
.
44.
Hollander
,
Y.
,
Durban
,
D.
,
Lu
,
X.
,
Kassab
,
G. S.
, and
Lanir
,
Y.
, 2011, “
Experimentally Validated Microstructural 3D Constitutive Model of Coronary Arterial Media
,”
J. Biomech. Eng.
,
133
, p.
031007
.
45.
Dahl
,
S. L. M.
,
Vaughn
,
M. E.
, and
Niklason
,
L. E.
, 2007, “
An Ultrastructural Analysis of Collagen in Tissue Engineered Arteries
,”
Ann. Biomed. Eng.
,
35
, pp.
1749
1755
.
46.
O’Connell
,
M. K.
,
Murthy
,
S.
,
Phan
,
S.
,
Xu
,
C.
,
Buchanan
,
J.
,
Spilker
,
R.
,
Dalman
,
R. L.
,
Zarins
,
C. K.
,
Denk
,
W.
, and
Taylor
,
C. A.
, 2008, “
The Three-Dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal and Electron Microscopy Imaging
,”
Matrix Biol.
,
27
, pp.
171
181
.
47.
Wolinsky
,
H.
, and
Glagov
,
S.
, 1967, “
Nature of Species Differences in the Medial Distribution of Aortic Vasa Vasorum in Mammals
,”
Circ. Res.
,
20
, pp.
409
421
.
48.
Fung
,
Y. C.
, 1972, “
Stress-Strain-History Relations of Soft Tissues in Simple Elongation
,”
Biomechanics— Its Foundations and Objectives
,
Y. C.
Fung
,
N.
Perrone
, and
M.
Anliker
, eds.,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
181
208
.
49.
Deng
,
S. X.
,
Tomioka
,
J.
,
Debes
,
J. C.
, and
Fung
,
Y. C.
, 1994, “
New Experiments on Shear Modulus of Elasticity of Arteries
,”
Am. J. Physiol.
,
266
, pp.
H1
10
.
50.
Guo
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
, 2007, “
Effect of Osmolarity on the Zero-Stress State and Mechanical Properties of Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
,
293
, pp.
H2328
2334
.
51.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1986, “
On Residual Stresses in Arteries
,”
J. Biomech. Eng.
,
108
, pp.
189
192
.
52.
Fung
,
Y. C.
, 1991, “
What are the Residual Stresses Doing in our blood vessels
?”
Ann. Biomed. Eng.
,
19
, pp.
237
249
.
53.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1992, “
Strain Distribution in Small Blood Vessels With Zero-Stress State Taken Into Consideration
,”
Am. J. Physiol.
,
262
, pp.
H544
552
.
54.
Omens
,
J. H.
, and
Fung
,
Y. C.
, 1990, “
Residual Strain in Rat Left Ventricle
,”
Circ. Res.
,
66
, pp.
37
45
.
55.
Lanir
,
Y.
, 2009, “
Mechanisms of Residual Stress in Soft Tissues
,”
J. Biomech. Eng.
,
131
, p.
044506
.
56.
Lanir
,
Y.
,
Hayam
,
G.
,
Abovsky
,
M.
,
Zlotnick
,
Y.
,
Uretzky
,
G.
,
Nevo
,
E.
, and
Ben-Haim
,
S. A.
, 1996, “
Effect of Myocardial Swelling on Residual Strain in the Left Ventricle of the Rat
,”
Am. J. Physiol. Heart Circ. Physiol.
,
39
, pp.
H1769
H1743
.
57.
Azeloglu
,
E. U.
,
Albro
,
M. B.
,
Thimmappa
,
V. A.
,
Ateshian
,
G. A.
, and
Costa
,
K. D.
, 2008, “
Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
,
294
, pp.
H1197
1205
.
58.
Fung
,
Y. C.
, 1993,
Biomechanics–Mechanical Properties of Living Tissues
(
Springer
,
Berlin
).
59.
Adcock
,
S.
, GAUL, the Genetic Algorithm Utility Library, 2004.
60.
Lu
,
X.
,
Yang
,
J.
,
Zhao
,
J. B.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
, 2003, “
Shear Modulus of Porcine Coronary Artery: Contributions of Media and Adventitia
,”
Am. J. Physiol. Heart Circ. Physiol.
,
285
, pp.
1966
1975
.
61.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and Comparative Study of Material Models
,”
J. Elasticity
,
61
, pp.
1
48
.
62.
Lanir
,
Y.
, 1996, “
Plausibility of Structural Constitutive Equations for Swelling Tissues—Implications of the C-N and S-E Conditions
,”
J. Biomech. Eng.
118
, pp.
10
16
.
You do not currently have access to this content.