Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. The exact cause and mechanism of the progression of AV calcification is unknown, although mechanical forces have been known to play a role. It is thus important to characterize the mechanical environment of the AV. In the current study, we establish a methodology of measuring shear stresses experienced by the aortic surface of the AV leaflets using an in vitro valve model and adapting the laser Doppler velocimetry (LDV) technique. The valve model was constructed from a fresh porcine aortic valve, which was trimmed and sutured onto a plastic stented ring, and inserted into an idealized three-lobed sinus acrylic chamber. Valve leaflet location was measured by obtaining the location of highest back-scattered LDV laser light intensity. The technique of performing LDV measurements near to biological surfaces as well as the leaflet locating technique was first validated in two phantom flow systems: (1) steady flow within a straight tube with AV leaflet adhered to the wall, and (2) steady flow within the actual valve model. Dynamic shear stresses were then obtained by applying the techniques on the valve model in a physiologic pulsatile flow loop. Results show that aortic surface shear stresses are low during early systole (<5dyn/cm2) but elevated to its peak during mid to late systole at about 18–20 dyn/cm2. Low magnitude shear stress (<5dyn/cm2) was observed during early diastole and dissipated to zero over the diastolic duration. Systolic shear stress was observed to elevate only with the formation of sinus vortex flow. The presented technique can also be used on other in vitro valve models such as congenitally geometrically malformed valves, or to investigate effects of hemodynamics on valve shear stress. Shear stress data can be used for further experiments investigating effects of fluid shear stress on valve biology, for conditioning tissue engineered AV, and to validate numerical simulations.

References

1.
Lindroos
,
M.
Kupari
,
M.
,
Heikkila
,
J.
, and
Tilvis
,
R.
, 1993, “
Prevalence of Aortic Valve Abnormalities in the Elderly: An Echocardiographic Study of a Random Population Sample
,”
J. Am. Coll. Cardiol.
,
21
(
5
), pp.
1220
1225
.
2.
Balachandran
,
K.
,
Sucosky
,
P.
,
Jo
,
H.
, and
Yoganathan
,
A. P.
, 2009, “
Elevated Cyclic Stretch Alters Matrix Remodeling in Aortic Valve Cusps: Implications for Degenerative Aortic Valve Disease
,”
Am. J. Physiol. Heart Circ. Physiol.
,
296
(
3
), pp.
H756
764
.
3.
Butcher
,
J. T.
,
Tressel
,
S.
,
Johnson
,
T.
,
Turner
,
D.
,
Sorescu
,
G.
,
Jo
,
H.
, and
Nerem
,
R. M.
, 2006, “
Transcriptional Profiles of Valvular and Vascular Endothelial Cells Reveal Phenotypic Differences: Influence of Shear Stress
,”
Arterioscler., Thromb., Vasc. Biol.
,
26
(
1
), pp.
69
77
.
4.
Ge
,
L.
, and
Sotiropoulos
,
F.
, 2010, “
Direction and Magnitude of Blood Flow Shear Stresses on the Leaflets of Aortic Valves: Is There a Link With Valve Calcification?
J. Biomech. Eng.
,
132
(
1
),
014505
.
5.
Sucosky
,
P.
,
Balachandran
,
K.
,
Elhammali
,
A.
,
Jo
,
H.
, and
Yoganathan
,
A. P.
, 2009, “
Altered Shear Stress Stimulates Upregulation of Endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-Dependent Pathway
,”
Arterioscler., Thromb., Vasc. Biol.
,
29
(
2
), pp.
254
260
.
6.
Xing
,
Y.
,
Warnock
,
J. N.
,
He
,
Z.
,
Hilbert
,
S. L.
, and
Yoganathan
,
A. P.
, 2004, “
Cyclic Pressure Affects the Biological Properties of Porcine Aortic Valve Leaflets in a Magnitude and Frequency Dependent Manner
,”
Ann. Biomed. Eng.
,
32
(
11
), pp.
1461
1470
.
7.
Freeman
,
R. V.
, and
Otto
,
C. M.
, 2005, “
Spectrum of Calcific Aortic Valve Disease: Pathogenesis, Disease Progression, and Treatment Strategies
,”
Circulation
,
111
(
24
), pp.
3316
3326
.
8.
Davies
,
P. F.
,
Spaan
,
J. A.
, and
Krams
,
R.
, 2005, “
Shear Stress Biology of the Endothelium
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1714
1718
.
9.
Otto
,
C. M.
,
Kuusisto
,
J.
,
Reichenbach
,
D. D.
,
Gown
,
A. M.
, and
O’Brien
,
K. D.
, 1994, “
Characterization of the Early Lesion of ‘Degenerative’ Valvular Aortic Stenosis: Histological and Immunohistochemical Studies
,”
Circulation
,
90
(
2
), pp.
844
853
.
10.
Stewart
,
B. F.
,
Siscovick
,
D.
,
Lind
,
B. K.
,
Gardin
,
J. M.
,
Gottdiener
,
J. S.
,
Smith
,
V. E.
,
Kitzman
,
D. W.
, and
Otto
,
C. M.
, 1997, “
Clinical Factors Associated With Calcific Aortic Valve Disease. Cardiovascular Health Study
,”
J. Am. Coll. Cardiol.
,
29
(
3
), pp.
630
634
.
11.
Agmon
,
Y.
Khandheria
,
B. K.
,
Meissner
,
I.
,
Sicks
,
J. R.
,
O’Fallon
,
W. M.
,
Wiebers
,
D. O.
,
Whisnant
,
J. P.
,
Seward
,
J. B.
, and
Tajik
,
A. J.
, 2001, “
Aortic Valve Sclerosis and Aortic Atherosclerosis: Different Manifestations of the Same Disease? Insights From a Population-Based Study
,”
J. Am. Coll. Cardiol.
,
38
(
3
), pp.
827
834
.
12.
De Hart
,
J.
,
Peters
,
G. W.
,
Schreurs
,
P. J.
, and
Baaijens
,
F. P.
, 2003, “
A Three-Dimensional Computational Analysis of Fluid-Structure Interaction in the Aortic Valve
,”
J. Biomech.
,
36
(
1
), pp.
103
112
.
13.
Weinberg
,
E. J.
, and
Kaazempur Mofrad
,
M. R.
, 2008, “
A Multiscale Computational Comparison of the Bicuspid and Tricuspid Aortic Valves in Relation to Calcific Aortic Stenosis
,”
J. Biomech.
,
41
(
16
), pp.
3482
3487
.
14.
Morsi
,
Y. S.
,
Yang
,
W. W.
,
Wong
,
C. S.
, and
Das
,
S.
, 2007, “
Transient Fluid-Structure Coupling for Simulation of a Trileaflet Heart Valve Using Weak Coupling
,”
J. Artif. Organs
,
10
(
2
), pp.
96
103
.
15.
Carmody
,
C. J.
,
Burriesci
,
G.
,
Howard
,
I. C.
, and
Patterson
,
E. A.
, 2006, “
An Approach to the Simulation of Fluid-Structure Interaction in the Aortic Valve
,”
J. Biomech.
,
39
(
1
), pp.
158
169
.
16.
Makhijani
,
V. B.
,
Yang
,
H. Q.
,
Dionne
,
P. J.
, and
Thubrikar
,
M. J.
, 1997, “
Three-Dimensional Coupled Fluid-Structure Simulation of Pericardial Bioprosthetic Aortic Valve Function
,”
ASAIO J.
,
43
(
5
), pp.
M387
392
.
17.
De Hart
,
J.
,
Peters
,
G. W.
,
Schreurs
,
P. J.
, and
Baaijens
,
F. P.
, 2004, “
Collagen Fibers Reduce Stresses and Stabilize Motion of Aortic Valve Leaflets During Systole
,”
J. Biomech.
,
37
(
3
), pp.
303
311
.
18.
Weston
,
M. W.
,
LaBorde
,
D. V.
, and
Yoganathan
,
A. P.
, 1999, “
Estimation of the Shear Stress on the Surface of an Aortic Valve Leaflet
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
572
579
.
19.
De Paulis
,
R.
,
Bassano
,
C.
,
Bertoldo
,
F.
, and
Chiariello
,
L.
, 2007, “
Aortic Valve-Sparing Operations and Aortic Root Replacement
,”
J. Cardiovasc. Med. (Hagerstown)
,
8
(
2
), pp.
97
101
.
20.
Parker
,
R.
,
Randev
,
R.
,
Wain
,
W. H.
, and
Ross
,
D. N.
, 1978, “
Storage of Heart Valve Allografts in Glycerol With Subsequent Antibiotic Sterilisation
,”
Thorax
,
33
(
5
), pp.
638
645
.
21.
Leo
,
H. L.
,
Simon
,
H.
,
Carberry
,
J.
,
Lee
,
S. C.
, and
Yoganathan
,
A. P.
, 2005, “
A Comparison of Flow Field Structures of Two Tri-Leaflet Polymeric Heart Valves
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
429
443
.
22.
Leo
,
H. L.
,
Dasi
,
L.P.
,
Carberry
,
J.
,
Simon
,
H. A.
, and
Yoganathan
,
A. P.
, 2006, “
Fluid Dynamic Assessment of Three Polymeric Heart Valves Using Particle Image Velocimetry
,”
Ann. Biomed. Eng.
,
34
(
6
), pp.
936
952
.
23.
Dasi
,
L. P.
,
Ge
,
L.
,
Simon
,
H.A.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A.P.
, 2007, “
Vorticity Dynamics of a Bileaflet Mechanical Heart Valve in an Axisymmetric Aorta
,”
Phys. Fluids
,
19
(
6
),
067105
.
24.
Yap
,
C. H.
,
Dasi
,
L. P.
, and
Yoganathan
,
A. P.
, 2010,
Dynamic Hemodynamic Energy Loss in Normal and Stenosed Aortic Valves
,
J. Biomech. Eng.
,
132
(
2
),
021005
.
25.
Bellhouse
,
B. J.
, and
Talbot
,
L.
, 1969, “
The Fluid Mechanics of the Aortic Valve
,”
J. Fluid. Mech.
,
35
(
4
), pp.
721
735
.
26.
Markl
,
M.
,
Draney
,
M. T.
,
Miller
,
D. C.
,
Levin
,
J. M.
,
Williamson
,
E. E.
,
Pelc
,
N. J.
,
Liang
,
D. H.
, and
Herfkens
,
R. J.
, 2005, “
Time-Resolved Three-Dimensional Magnetic Resonance Velocity Mapping of Aortic Flow in Healthy Volunteers and Patients After Valve-Sparing Aortic Root Replacement
,”
J. Thorac. Cardiovasc. Surg.
,
130
(
2
), pp.
456
463
.
27.
Durst
,
F.
,
Ray
,
S.
,
Unsal
,
B.
, and
Bayoumi
,
O. A.
, 2005, “
The Development Lengths of Laminar Pipe and Channel Flows
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1154
1160
.
28.
Peacock
,
J. A.
, 1990, “
An in Vitro Study of the Onset of Turbulence in the Sinus of Valsalva
,”
Circ. Res.
,
67
(
2
), pp.
448
460
.
29.
Bellhouse
,
B. J.
, 1969, “
Velocity and Pressure Distributions in Aortic Valve
,”
J. Fluid Mech.
,
37
, pp.
587
600
.
30.
Swanson
,
M.
, and
Clark
,
R. E.
, 1974, “
Dimensions and Geometric Relationships of the Human Aortic Valve as a Function of Pressure
,”
Circ. Res.
,
35
(
6
), pp.
871
882
.
31.
Li
,
Y. S.
,
Haga
,
J. H.
, and
Chien
,
S.
, 2005, “
Molecular Basis of the Effects of Shear Stress on Vascular Endothelial Cells
,”
J. Biomech.
,
38
(
10
), pp.
1949
1971
.
32.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
, 1985, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Arteriosclerosis
,
5
(
3
), pp.
293
302
.
33.
Kvitting
,
J. P.
,
Ebbers
,
T.
,
Wigstrom
,
L.
,
Engvall
,
J.
,
Olin
,
C. L.
, and
Bolger
,
A. F.
, 2004, “
Flow Patterns in the Aortic Root and the Aorta Studied With Time-Resolved, 3-Dimensional, Phase-Contrast Magnetic Resonance Imaging: Implications for Aortic Valve-Sparing Surgery
,”
J. Thorac. Cardiovasc. Surg.
,
127
(
6
), pp.
1602
1607
.
34.
Leyh
,
R. G.
,
Schmidtke
,
C.
,
Sievers
,
H. H.
, and
Yacoub
,
M. H.
, 1999, “
Opening and Closing Characteristics of the Aortic Valve After Different Types of Valve-Preserving Surgery
,”
Circulation
,
100
(
21
), pp.
2153
2160
.
35.
Yap
,
C. H.
,
Kim
,
H.S.
,
Balachandran
,
K.
,
Weiler
,
M.
,
Haj-Ali
,
R.
, and
Yoganathan
,
A.P.
, “
Dynamic Deformation Characteristics of Porcine Aortic Valve Leaflet Under Normal and Hypertensive Conditions
,”
Am. J. Physiol. Heart Circ. Physiol.
,
298
(
2
), pp.
H395
405
, 2010.
36.
White
,
F.
, 1991,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.