Models of post-traumatic osteoarthritis where early degenerative changes can be monitored are valuable for assessing potential therapeutic strategies. Current methods for evaluating cartilage mechanical properties may not capture the low-grade cartilage changes expected at these earlier time points following injury. In this study, an explant model of cartilage injury was used to determine whether streaming potential measurements by manual indentation could detect cartilage changes immediately following mechanical impact and to compare their sensitivity to biomechanical tests. Impacts were delivered ex vivo, at one of three stress levels, to specific positions on isolated adult equine trochlea. Cartilage properties were assessed by streaming potential measurements, made pre- and post-impact using a commercially available arthroscopic device, and by stress relaxation tests in unconfined compression geometry of isolated cartilage disks, providing the streaming potential integral (SPI), fibril modulus (Ef), matrix modulus (Em), and permeability (k). Histological sections were stained with Safranin-O and adjacent unstained sections examined in polarized light microscopy. Impacts were low, 17.3 ± 2.7 MPa (n = 15), medium, 27.8 ± 8.5 MPa (n = 13), or high, 48.7 ± 12.1 MPa (n = 16), and delivered using a custom-built spring-loaded device with a rise time of approximately 1 ms. SPI was significantly reduced after medium (p = 0.006) and high (p<0.001) impacts. Ef, representing collagen network stiffness, was significantly reduced in high impact samples only (p < 0.001 lateral trochlea, p = 0.042 medial trochlea), where permeability also increased (p = 0.003 lateral trochlea, p = 0.007 medial trochlea). Significant (p < 0.05, n = 68) moderate to strong correlations between SPI and Ef (r = 0.857), Em (r = 0.493), log(k) (r = −0.484), and cartilage thickness (r = −0.804) were detected. Effect sizes were higher for SPI than Ef, Em, and k, indicating greater sensitivity of electromechanical measurements to impact injury compared to purely biomechanical parameters. Histological changes due to impact were limited to the presence of superficial zone damage which increased with impact stress. Non-destructive streaming potential measurements were more sensitive to impact-related articular cartilage changes than biomechanical assessment of isolated samples using stress relaxation tests in unconfined compression geometry. Correlations between electromechanical and biomechanical methods further support the relationship between non-destructive electromechanical measurements and intrinsic cartilage properties.

References

1.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
, 2001, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
,
34
(
1
), pp.
1
12
.
2.
Korhonen
,
R. K.
,
Wong
,
M.
,
Arokoski
,
J.
,
Lindgren
,
R.
,
Helminen
,
H. J.
,
Hunziker
,
E. B.
, and
Jurvelin
,
J. S.
, 2002, “
Importance of the Superficial Tissue Layer for the Indentation Stiffness of Articular Cartilage
,”
Med. Eng. Phys.
,
24
(
2
), pp.
99
108
.
3.
Li
,
L. P.
,
Korhonen
,
R. K.
,
Iivarinen
,
J.
,
Jurvelin
,
J. S.
, and
Herzog
,
W.
, 2008, “
Fluid Pressure Driven Fibril Reinforcement in Creep and Relaxation Tests of Articular Cartilage
,”
Med. Eng. Phys.
,
30
(
2
), pp.
182
189
.
4.
Park
,
S.
,
Krishnan
,
R.
,
Nicoll
,
S. B.
, and
Ateshian
,
G. A.
, 2003, “
Cartilage Interstitial Fluid Load Support in Unconfined Compression
,”
J. Biomech.
,
36
(
12
), pp.
1785
196
.
5.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
, 1987, “
Cartilage Electromechanics–I. Electrokinetic Transduction and the Effects of Electrolyte Ph and Ionic Strength
,”
J. Biomech.
,
20
(
6
), pp.
615
627
.
6.
Maroudas
,
A.
, 1967, “
Fixed Charge Density in Articular Cartilage
,”
Proceedings of the 7th International Conference on Medical and Biological Engineering
,
Stockholm
,
Sweden
, pp.
505
.
7.
Maroudas
,
A.
,
Muir
,
H.
, and
Wingham
,
J.
, 1969, “
The Correlation of Fixed Negative Charge with Glycosaminoglycan Content of Human Articular Cartilage
,”
Biochim. Biophys. Acta
,
177
(
3
), pp.
492
500
.
8.
Sun
,
D. D.
,
Guo
,
X. E.
,
Likhitpanichkul
,
M.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 2004, “
The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage under Unconfined Compression
,”
J. Biomech. Eng.
,
126
(
1
), pp.
6
16
.
9.
Bonassar
,
L. J.
,
Jeffries
,
K. A.
,
Paguio
,
C. G.
, and
Grodzinsky
,
A. J.
, 1995, “
Cartilage Degradation and Associated Changes in Biochemical and Electromechanical Properties
,”
Acta Orthop. Scand. Suppl.
,
266
, pp.
38
44
.
10.
Bonassar
,
L. J.
,
Sandy
,
J. D.
,
Lark
,
M. W.
,
Plaas
,
A. H.
,
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
, 1997, “
Inhibition of Cartilage Degradation and Changes in Physical Properties Induced by Il-1beta and Retinoic Acid Using Matrix Metalloproteinase Inhibitors
,”
Arch. Biochem. Biophys.
,
344
(
2
), pp.
404
12
.
11.
Chen
,
A. C.
,
Nguyen
,
T. T.
, and
Sah
,
R. L.
, 1997, “
Streaming Potentials During the Confined Compression Creep Test of Normal and Proteoglycan-Depleted Cartilage
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
269
77
.
12.
Frank
,
E. H.
,
Grodzinsky
,
A. J.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
, 1987, “
Streaming Potentials: A Sensitive Index of Enzymatic Degradation in Articular Cartilage
,”
J. Orthop. Res.
,
5
(
4
), pp.
497
508
.
13.
Garon
,
M.
,
Legare
,
A.
,
Guardo
,
R.
,
Savard
,
P.
, and
Buschmann
,
M. D.
, 2002, “
Streaming Potentials Maps Are Spatially Resolved Indicators of Amplitude, Frequency and Ionic Strength Dependant Responses of Articular Cartilage to Load
,”
J. Biomech.
,
35
(
2
), pp.
207
216
.
14.
Legare
,
A.
,
Garon
,
M.
,
Guardo
,
R.
,
Savard
,
P.
,
Poole
,
A. R.
, and
Buschmann
,
M. D.
, 2002, “
Detection and Analysis of Cartilage Degeneration by Spatially Resolved Streaming Potentials
,”
J. Orthop. Res.
,
20
(
4
), pp.
819
826
.
15.
Mandelbaum
,
B.
, and
Waddell
,
D.
, 2005, “
Etiology and Pathophysiology of Osteoarthritis
,”
Orthopedics
,
28
(
2 Suppl.
), pp.
s207
214
.
16.
Lotz
,
M. K.
, 2010, “
New Developments in Osteoarthritis. Posttraumatic Osteoarthritis: Pathogenesis and Pharmacological Treatment Options
,”
Arthritis Res. Ther.
,
12
(
3
), pp.
211
.
17.
Scott
,
C. C.
, and
Athanasiou
,
K. A.
, 2006, “
Mechanical Impact and Articular Cartilage
,”
Crit. Rev. Biomed. Eng.
,
34
(
5
), pp.
347
78
.
18.
Aspden
,
R. M.
,
Jeffrey
,
J. E.
, and
Burgin
,
L. V.
, 2002, “
Impact Loading of Articular Cartilage
,”
Osteoarthritis Cartilage
,
10
(
7
), pp.
588
5889
; author reply, 590.
19.
Jeffrey
,
J. E.
,
Gregory
,
D. W.
, and
Aspden
,
R. M.
, 1995, “
Matrix Damage and Chondrocyte Viability Following a Single Impact Load on Articular Cartilage
,”
Arch Biochem. Biophys.
,
322
(
1
), pp.
87
96
.
20.
Quinn
,
T. M.
,
Allen
,
R. G.
,
Schalet
,
B. J.
,
Perumbuli
,
P.
, and
Hunziker
,
E. B.
, 2001, “
Matrix and Cell Injury Due to Sub-Impact Loading of Adult Bovine Articular Cartilage Explants: Effects of Strain Rate and Peak Stress
,”
J. Orthop. Res.
,
19
(
2
), pp.
242
249
.
21.
Repo
,
R. U.
, and
Finlay
,
J. B.
, 1977, “
Survival of Articular Cartilage after Controlled Impact
,”
J Bone Joint Surg. Am.
,
59
(
8
), pp.
1068
1076
.
22.
Thompson
,
R. C.
, Jr.
,
Oegema
,
T. R.
, Jr.
,
Lewis
,
J. L.
, and
Wallace
,
L.
, 1991, “
Osteoarthrotic Changes after Acute Transarticular Load. An Animal Model
,”
J. Bone Joint Surg. Am
,
73
(
7
), pp.
990
1001
.
23.
Torzilli
,
P. A.
,
Grigiene
,
R.
,
Borrelli
,
J.
, Jr.
, and
Helfet
,
D. L.
, 1999, “
Effect of Impact Load on Articular Cartilage: Cell Metabolism and Viability, and Matrix Water Content
,”
ASME J. Biomech. Eng.
,
121
(
5
), pp.
433
441
.
24.
Isaac
,
D. I.
,
Meyer
,
E. G.
,
Kopke
,
K. S.
, and
Haut
,
R. C.
, 2010, “
Chronic Changes in the Rabbit Tibial Plateau Following Blunt Trauma to the Tibiofemoral Joint
,”
J. Biomech.
,
43
(
9
), pp.
1682
1688
.
25.
Borrelli
,
J.
, Jr.
,
Zhu
,
Y.
,
Burns
,
M.
,
Sandell
,
L.
, and
Silva
,
M. J.
, 2004, “
Cartilage Tolerates Single Impact Loads of as Much as Half the Joint Fracture Threshold
,”
Clin. Orthop. Relat. Res.
,
426
, pp.
266
273
.
26.
Vrahas
,
M. S.
,
Smith
,
G. A.
,
Rosler
,
D. M.
, and
Baratta
,
R. V.
, 1997, “
Method to Impact in Vivo Rabbit Femoral Cartilage with Blows of Quantifiable Stress
,”
J. Orthop. Res.
,
15
(
2
), pp.
314
317
.
27.
Zhang
,
H.
,
Vrahas
,
M. S.
,
Baratta
,
R. V.
, and
Rosler
,
D. M.
, 1999, “
Damage to Rabbit Femoral Articular Cartilage Following Direct Impacts of Uniform Stresses: An in Vitro Study
,”
Clin. Biomech.
,
14
(
8
), pp.
543
548
.
28.
Bolam
,
C. J.
,
Hurtig
,
M. B.
,
Cruz
,
A.
, and
McEwen
,
B. J.
, 2006, “
Characterization of Experimentally Induced Post-Traumatic Osteoarthritis in the Medial Femorotibial Joint of Horses
,”
Am. J. Vet. Res.
,
67
(
3
), pp.
433
447
.
29.
Donohue
,
J. M.
,
Buss
,
D.
,
Oegema
,
T. R.
, Jr.
, and
Thompson
,
R. C.
, Jr.
, 1983, “
The Effects of Indirect Blunt Trauma on Adult Canine Articular Cartilage
,”
J. Bone Joint Surg. Am.
,
65
(
7
), pp.
948
957
.
30.
Haut
,
R. C.
,
Ide
,
T. M.
, and
De Camp
,
C. E.
, 1995, “
Mechanical Responses of the Rabbit Patello-Femoral Joint to Blunt Impact
,”
ASME J. Biomech. Eng.
,
117
(
4
), pp.
402
408
.
31.
Newberry
,
W. N.
,
Mackenzie
,
C. D.
, and
Haut
,
R. C.
, 1998, “
Blunt Impact Causes Changes in Bone and Cartilage in a Regularly Exercised Animal Model
,”
J. Orthop. Res.
,
16
(
3
), pp.
348
354
.
32.
Borrelli
,
J.
, Jr.
, and
Ricci
,
W. M.
, 2004, “
Acute Effects of Cartilage Impact
,”
Clin. Orthop. Relat. Res.
,
423
, pp.
33
39
.
33.
Changoor
,
A.
,
Hurtig
,
M. B.
,
Runciman
,
R. J.
,
Quesnel
,
A. J.
,
Dickey
,
J. P.
, and
Lowerison
,
M.
, 2006, “
Mapping of Donor and Recipient Site Properties for Osteochondral Graft Reconstruction of Subchondral Cystic Lesions in the Equine Stifle Joint
,”
Equine Vet. J.
,
38
(
4
), pp.
330
336
.
34.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
, 2000, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison with a Fibril-Reinforced Biphasic Model
,”
ASME J. Biomech. Eng.
,
122
(
2
), pp.
189
195
.
35.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clin. Biomech.
,
14
(
9
), pp.
673
682
.
36.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 1999, “
A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
340
347
.
37.
Changoor
,
A.
,
Quenneville
,
E.
,
Garon
,
M.
,
Hurtig
,
M. B.
, and
Buschmann
,
M. D.
, 2009, “
Streaming Potential-Based Arthroscopic Device Can Detect Changes Immediately Following Localized Impact in an Equine Impact Model of Osteoarthritis
,”
Osteoarthritis Cartilage
17
(
Suppl. 1
), pp.
S53
.
38.
Eliasziw
,
M.
,
Young
,
S. L.
,
Woodbury
,
M. G.
, and
Fryday-Field
,
K.
, 1994, “
Statistical Methodology for the Concurrent Assessment of Interrater and Intrarater Reliability: Using Goniometric Measurements as an Example
,”
Phys. Ther.
,
74
(
8
), pp.
777
788
.
39.
Meachim
,
G.
, 1972, “
Light Microscopy of Indian Ink Preparations of Fibrillated Cartilage
,”
Ann. Rheum. Dis.
,
31
(
6
), pp.
457
564
.
40.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
, 2003, “
Strain-Rate Dependent Stiffness of Articular Cartilage in Unconfined Compression
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
161
168
.
41.
Korhonen
,
R. K.
,
Laasanen
,
M. S.
,
Toyras
,
J.
,
Lappalainen
,
R.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2003, “
Fibril Reinforced Poroelastic Model Predicts Specifically Mechanical Behavior of Normal, Proteoglycan Depleted and Collagen Degraded Articular Cartilage
,”
J. Biomech.
,
36
(
9
), pp.
1373
1379
.
42.
Changoor
,
A.
,
Fereydoonzad
,
L.
,
Yaroshinsky
,
A.
, and
Buschmann
,
M. D.
, 2010, “
Effects of Refrigeration and Freezing on the Electromechanical and Biomechanical Properties of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
064502
.
43.
Garon
,
M.
, 2007, “
Conception Et Validation D’une Sonde Arthroscopique Pour L’évaluation Des Propriétés Électromécaniques Fonctionelles Du Cartilage Articulaire
,” Ph.D. thesis, Ecole Polytechnique de Montreal, Montreal.
44.
Changoor
,
A.
,
Quenneville
,
E.
,
Garon
,
M.
,
Cloutier
,
L.
,
Hurtig
,
M.
, and
Buschmann
,
M. D.
, 2007, “
Streaming Potential-Based Arthroscopic Device Discerns Topographical Differences in Cartilage Covered and Uncovered by Meniscus in Ovine Stifle Joints
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
,
32
, pp.
631
.
45.
Garon
,
M.
,
Cloutier
,
L.
,
Legare
,
A.
,
Quenneville
,
E.
,
Shive
,
M. S.
, and
Buschmann
,
M. D.
, 2007, “
Reliability and Correlation to Human Articular Cartilage Mechanical Properties of a Streaming Potential Based Arthroscopic Instrument
,”
Trans. Annu. Meet. - Orthop. Res. Soc.
,
32
, pp.
629
.
46.
Hodge
,
W. A.
,
Carlson
,
K. L.
,
Fijan
,
R. S.
,
Burgess
,
R. G.
,
Riley
,
P. O.
,
Harris
,
W. H.
, and
Mann
,
R. W.
, 1989, “
Contact Pressures from an Instrumented Hip Endoprosthesis
,”
J. Bone Joint Surg. Am.
,
71
(
9
), pp.
1378
1386
.
47.
Matthews
,
L. S.
,
Sonstegard
,
D. A.
, and
Henke
,
J. A.
, 1977, “
Load Bearing Characteristics of the Patello-Femoral Joint
,”
Acta Orthop. Scand.
,
48
(
5
), pp.
511
516
.
48.
Haut
,
R. C.
, 1989, “
Contact Pressures in the Patellofemoral Joint During Impact Loading on the Human Flexed Knee
,”
J. Orthop. Res.
,
7
(
2
), pp.
272
280
.
49.
Buckwalter
,
J. A.
, and
Brown
,
T. D.
, 2004, “
Joint Injury, Repair, and Remodeling: Roles in Post-Traumatic Osteoarthritis
,”
Clin. Orthop. Relat. Res.
,
423
, pp.
7
16
.
50.
Kurz
,
B.
,
Lemke
,
A. K.
,
Fay
,
J.
,
Pufe
,
T.
,
Grodzinsky
,
A. J.
, and
Schunke
,
M.
, 2005, “
Pathomechanisms of Cartilage Destruction by Mechanical Injury
,”
Ann. Anat.
,
187
(
5-6
), pp.
473
485
.
51.
Patwari
,
P.
,
Fay
,
J.
,
Cook
,
M. N.
,
Badger
,
A. M.
,
Kerin
,
A. J.
,
Lark
,
M. W.
, and
Grodzinsky
,
A. J.
, 2001, “
In Vitro Models for Investigation of the Effects of Acute Mechanical Injury on Cartilage
,”
Clin. Orthop. Relat. Res.
,
391
(
Suppl.
), pp.
S61
71
.
52.
Anderson
,
D. D.
,
Brown
,
T. D.
,
Yang
,
K. H.
, and
Radin
,
E. L.
, 1990, “
A Dynamic Finite Element Analysis of Impulsive Loading of the Extension-Splinted Rabbit Knee
,”
ASME J. Biomech. Eng.
,
112
(
2
), pp.
119
128
.
53.
Duda
,
G. N.
,
Eilers
,
M.
,
Loh
,
L.
,
Hoffman
,
J. E.
,
Kaab
,
M.
, and
Schaser
,
K.
, 2001, “
Chondrocyte Death Precedes Structural Damage in Blunt Impact Trauma
,”
Clin. Orthop. Relat. Res.
,
393
, pp.
302
309
.
54.
Morel
,
V.
,
Berutto
,
C.
, and
Quinn
,
T. M.
, 2006, “
Effects of Damage in the Articular Surface on the Cartilage Response to Injurious Compression in Vitro
,”
J. Biomech.
,
39
(
5
), pp.
924
30
.
55.
Chrisman
,
O. D.
,
Ladenbauer-Bellis
,
I. M.
,
Panjabi
,
M.
, and
Goeltz
,
S.
, 1981, “
(1981) Nicolas Andry Award. The Relationship of Mechanical Trauma and the Early Biochemical Reactions of Osteoarthritic Cartilage
,”
Clin. Orthop. Relat. Res.
,
161
, pp.
275
284
.
56.
Levin
,
A.
,
Burton-Wurster
,
N.
,
Chen
,
C. T.
, and
Lust
,
G.
, 2001, “
Intercellular Signaling as a Cause of Cell Death in Cyclically Impacted Cartilage Explants
,”
Osteoarthritis Cartilage
,
9
(
8
), pp.
702
711
.
You do not currently have access to this content.