While modeling the trapeziometacarpal (TMC) joint for determination of tendon forces, the TMC has been considered frictionless and passive moments created by soft tissues neglected. This, however, becomes inaccurate when reaching the joint end range of motion and considering that the TMC is entirely crossed by a complex network of skin, ligaments, soft tissues, and tendons. The objective of this study was to evaluate the passive moments with respect to joint posture in order to further include this relationship in biomechanical modeling. An experimental method was proposed to estimate in vivo a global passive moment including the sum of the actions of each passive anatomical structure. An external force was applied at the level of the metacarpophalangeal joint in various directions ranging from neutral position to full extension and full adduction to full abduction. The passive moment was computed and expressed as a function of the adopted joint angles. An exponential regression was then developed to fit the experimental data and to propose a generic passive moment model. Results showed a good agreement between the proposed exponential regression model and the experimental measures. Moreover, it was shown that joint stiffness could represent more than 60% of the net joint moment during a typical pulp grip task. These results showed the necessity to include the data in biomechanical modeling. The results may help predict more realistic tendons force especially in abduction/adduction muscles.

1.
Rossi
,
C.
,
Cellocco
,
P.
,
Bizzarri
,
F.
,
Margaritondo
,
E.
, and
Costanzo
,
G.
, 2005, “
Trapeziometacarpal Joint Osteoarthritis: A Retrospective Study Comparing Arthrodesis to Tendon Interposition Arthroplasty
,”
J. Orthop. Trauma
0890-5339,
6
(
3
), pp.
145
149
.
2.
Chao
,
E.
,
An
,
K. N.
,
Cooney
,
W. P.
, and
Linscheid
,
R. L.
, 1989,
Biomechanics of the Hand: A Basic Research Study
,
World Scientific
,
Singapore
.
3.
Harding
,
D.
,
Brandt
,
K.
, and
Hillberry
,
B.
, 1993, “
Finger Joint Force Minimization in Pianists Using Optimization Techniques
,”
J. Biomech.
0021-9290,
26
(
12
), pp.
1403
1412
.
4.
Vigouroux
,
L.
,
Quaine
,
F.
,
Paclet
,
F.
,
Colloud
,
F.
, and
Moutet
,
F.
, 2008, “
Middle and Ring Fingers Are More Exposed to Pulley Rupture Than Index and Little During Sport-Climbing: A Biomechanical Explanation
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
23
(
5
), pp.
562
570
.
5.
Valero-Cuevas
,
F. J.
,
Johanson
,
M. E.
, and
Towles
,
J. D.
, 2003, “
Towards a Realistic Biomechanical Model of the Thumb: The Choice of Kinematic Description May Be More Critical Than the Solution Method or the Variability/Uncertainty of Musculoskeletal Parameters
,”
J. Biomech.
0021-9290,
36
(
7
), pp.
1019
1030
.
6.
Napier
,
J.
, 1956, “
The Prehensile Movements of the Human Hand
,”
J. Bone Joint Surg. Br.
0301-620X,
38
(
4
), pp.
902
913
.
7.
Domalain
,
M.
,
Vigouroux
,
L.
,
Danion
,
F.
,
Sevrez
,
V.
, and
Berton
,
E.
, 2008, “
Effect of Object Width on Precision Grip Force and Finger Posture
,”
Ergonomics
0014-0139,
51
(
9
), pp.
1441
1453
.
8.
Bettinger
,
P.
,
Smutz
,
W.
,
Linscheid
,
R.
,
Cooney
,
W.
, III
, and
An
,
K.
, 2000, “
Material Properties of the Trapezial and Trapeziometacarpal Ligaments
,”
J. Hand Surg. [Am]
,
25
(
6
), pp.
1085
1095
.
9.
Harvey
,
L.
,
De Jong
,
I.
,
Goehl
,
G.
,
Armstrong
,
B.
, and
Allaous
,
J.
, 2006, “
A Torque-Controlled Device to Measure Passive Abduction of the Thumb Carpometacarpal Joint
,”
J. Hand Ther.
0894-1130,
19
(
4
), pp.
403
409
.
10.
Little
,
J.
, and
Khalsa
,
P.
, 2005, “
Material Properties of the Human Lumbar Facet Joint Capsule
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
1
), pp.
15
24
.
11.
Lieber
,
R.
,
Leonard
,
M.
,
Brown
,
C.
, and
Trestik
,
C.
, 1991, “
Frog Semitendinosis Tendon Load-Strain and Stress-Strain Properties During Passive Loading
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
261
(
1
), pp.
86
92
.
12.
Bettinger
,
P. C.
,
Linscheid
,
R. L.
,
Berger
,
R. A.
,
Cooney
,
W. P.
, III
, and
An
,
K. N.
, 1999, “
An Anatomic Study of the Stabilizing Ligaments of the Trapezium and Trapeziometacarpal Joint
,”
J. Hand Surg. [Am]
,
24
(
4
), pp.
786
798
.
13.
Cooney
,
W.
, and
Chao
,
E.
, 1977, “
Biomechanical Analysis of Static Forces in the Thumb During Hand Function
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
59
(
1
), pp.
27
36
.
14.
Hatze
,
H.
, 1997, “
A Three-Dimensional Multivariate Model of Passive Human Joint Torques and Articular Boundaries
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
12
(
2
), pp.
128
135
.
15.
Vigouroux
,
L.
,
Quaine
,
F.
,
Labarre-Vila
,
A.
, and
Moutet
,
F.
, 2006, “
Estimation of Finger Muscle Tendon Tensions and Pulley Forces During Specific Sport-Climbing Grip Techniques
,”
J. Biomech.
0021-9290,
39
(
14
), pp.
2583
2592
.
16.
Silder
,
A.
,
Whittington
,
B.
,
Heiderscheit
,
B.
, and
Thelen
,
D. G.
, 2007, “
Identification of Passive Elastic Joint Moment-Angle Relationships in the Lower Extremity
,”
J. Biomech.
0021-9290,
40
(
12
), pp.
2628
2635
.
17.
Trevino
,
S.
,
Buford
,
W.
, Jr.
,
Nakamura
,
T.
,
Wright
,
A.
,
Brown
,
S.
, and
Patterson
,
R.
, 2004, “
Objective Differentiation of the Adult Diabetic Foot and Adult Normal Foot Using a Torque Range-of-Motion Device
,”
Foot Ankle Int.
1071-1007,
25
(
8
), pp.
561
567
.
18.
Buchholz
,
B.
, and
Armstrong
,
T.
, 1992, “
A Kinematic Model of the Human Hand to Evaluate Its Prehensile Capabilities
,”
J. Biomech.
0021-9290,
25
(
2
), pp.
149
162
.
19.
Esteki
,
A.
, and
Mansour
,
J.
, 1997, “
A Dynamic Model of the Hand with Application in Functional Neuromuscular Stimulation
,”
Ann. Biomed. Eng.
0090-6964,
25
(
3
), pp.
440
451
.
20.
Cooney
,
W.
,
Lucca
,
M.
,
Chao
,
E.
, and
Linscheid
,
R.
, 1981, “
The Kinesiology of the Thumb Trapeziometacarpal Joint
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
63
(
9
), pp.
1371
1381
.
21.
Cerveri
,
P.
,
De Momi
,
E.
,
Marchente
,
M.
,
Lopomo
,
N.
,
Baud-Bovy
,
G.
,
Barros
,
R. M. L.
, and
Ferrigno
,
G.
, 2008, “
In Vivo Validation of a Realistic Kinematic Model for the Trapezio-Metacarpal Joint Using an Optoelectronic System
,”
Ann. Biomed. Eng.
0090-6964,
36
(
7
), pp.
1268
80
.
22.
Cheze
,
L.
,
Dumas
,
R.
,
Comtet
,
J. J.
,
Rumelhart
,
C.
, and
Fayet
,
M.
, 2009, “
A Joint Coordinate System Proposal for the Study of the Trapeziometacarpal Joint Kinematics
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
12
(
3
), pp.
277
282
.
23.
Chang
,
L.
, and
Pollard
,
N.
, 2008, “
Method for Determining Kinematic Parameters of the in Vivo Thumb Carpometacarpal Joint
,”
ASME J. Biomech. Eng.
0148-0731,
55
(
7
), pp.
1897
1906
.
24.
Yoon
,
Y.
, and
Mansour
,
J.
, 1982, “
The Passive Elastic Moment at the Hip
,”
J. Biomech.
0021-9290,
15
(
12
), pp.
905
910
.
25.
Riener
,
R.
, and
Edrich
,
T.
, 1999, “
Identification of Passive Elastic Joint Moments in the Lower Extremities
,”
J. Biomech.
0021-9290,
32
(
5
), pp.
539
544
.
26.
Cheze
,
L.
,
Doriot
,
N.
,
Eckert
,
M.
,
Rumelhart
,
C.
, and
Comtet
,
J.
, 2001, “
In Vivo Cinematic Study of the Trapezometacarpal Joint
,”
Ann. Chir. Main
0753-9053,
20
(
1
), pp.
23
30
.
27.
Fung
,
Y.
, 1967, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
0002-9513,
213
(
6
), pp.
1532
1544
.
28.
Dickey
,
J. P.
, and
Gillespie
,
K. A.
, 2003, “
Representation of Passive Spinal Element Contributions to In Vitro Flexion-Extension Using a Polynomial Model: Illustration Using the Porcine Lumbar Spine
,”
J. Biomech.
0021-9290,
36
(
6
), pp.
883
888
.
29.
Magnusson
,
S.
,
Aagaard
,
P.
,
Larsson
,
B.
, and
Kjaer
,
M.
, 2000, “
Passive Energy Absorption by Human Muscle-Tendon Unit Is Unaffected by Increase in Intramuscular Temperature
,”
J. Appl. Physiol.
8750-7587,
88
(
4
), pp.
1215
1220
.
30.
Kuo
,
L. C.
,
Cooney
,
W. P.
,
Oyama
,
M.
,
Kaufman
,
K. R.
,
Su
,
F. C.
, and
An
,
K. N.
, 2003, “
Feasibility of Using Surface Markers for Assessing Motion of the Thumb Trapeziometacarpal Joint
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
(
6
), pp.
558
563
.
You do not currently have access to this content.