Large eddy simulation was applied for flow of Re=2000 in a stenosed pipe in order to undertake a thorough investigation of the wall shear stress (WSS) in turbulent flow. A decomposition of the WSS into time averaged and fluctuating components is proposed. It was concluded that a scale resolving technique is required to completely describe the WSS pattern in a subject specific vessel model, since the poststenotic region was dominated by large axial and circumferential fluctuations. Three poststenotic regions of different WSS characteristics were identified. The recirculation zone was subject to a time averaged WSS in the retrograde direction and large fluctuations. After reattachment there was an antegrade shear and smaller fluctuations than in the recirculation zone. At the reattachment the fluctuations were the largest, but no direction dominated over time. Due to symmetry the circumferential time average was always zero. Thus, in a blood vessel, the axial fluctuations would affect endothelial cells in a stretched state, whereas the circumferential fluctuations would act in a relaxed direction.

1.
Sallam
,
A. M.
, and
Hwang
,
N. H.
, 1984, “
Human Red Blood Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stresses
,”
Biorheology
0006-355X,
21
(
6
), pp.
783
797
.
2.
Stein
,
P. D.
, and
Sabbah
,
H. N.
, 1974, “
Measured Turbulence and Its Effect on Thrombus Formation
,”
Circ. Res.
0009-7330,
35
, pp.
608
614
.
3.
Becker
,
R. C.
,
Eisenberg
,
P.
, and
Turpie
,
A. G.
, 2001, “
Pathobiologic Features and Prevention of Thrombotic Complications Associated With Prosthetic Heart Valves: Fundamental Principles and the Contribution of Platelets and Thrombin
,”
Am. Heart J.
0002-8703,
141
(
6
), pp.
1025
1037
.
4.
Davies
,
P. F.
,
Dewey
,
C. F.
, Jr.
,
Bussolari
,
S. R.
,
Gordon
,
E. J.
, and
Gimbrone
,
M. A.
, Jr.
, 1984, “
Influence of Hemodynamic Forces on Vascular Endothelial Function In Vitro Studies of Shear Stress and Pinocytosis in Bovine Aortic Cells
,”
J. Clin. Invest.
0021-9738,
73
, pp.
1121
1129
.
5.
Davies
,
P. F.
,
Remuzzi
,
A.
,
Gordon
,
E. J.
,
Dewey
,
C. F.
, Jr.
, and
Gimbrone
,
M. A.
, Jr.
, 1986, “
Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
83
, pp.
2114
2117
.
6.
Moore
,
J. E.
, Jr.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
, and
Ku
,
D. N.
, 1994, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atherosclerosis
0021-9150,
110
, pp.
225
240
.
7.
Honda
,
H.
,
Hsiai
,
T.
,
Wortham
,
C. M.
,
Chen
,
M.
,
Lin
,
H.
,
Navab
,
M.
, and
Demer
,
L. L.
, 2001, “
A Complex Flow Pattern of Low Shear Stress and Flow Reversal Promotes Monocyte Binding to Endothelial Cells
,”
Atherosclerosis
0021-9150,
158
, pp.
385
390
.
8.
Irace
,
C.
,
Cortese
,
C.
,
Fiaschi
,
E.
,
Carallo
,
C.
,
Farinaro
,
E.
, and
Gnasso
,
A.
, 2004, “
Wall Shear Stress Is Associated With Intima-Media Thickness and Carotid Atherosclerosis in Subjects at Low Coronary Heart Disease Risk
,”
Stroke
0039-2499,
35
, pp.
464
468
.
9.
1990,
McDonald’s Blood Flow in Arteries
,
Arnold
,
London
.
10.
Antiga
,
L.
, and
Steinman
,
D. A.
, 2009, “
Rethinking Turbulence in Blood
,”
Biorheology
0006-355X,
46
, pp.
77
81
.
11.
Deshpande
,
M. D.
, and
Giddens
,
D. G.
, 1980, “
Turbulence Measurements in a Constricted Tube
,”
J. Fluid Mech.
0022-1120,
97
, pp.
65
89
.
12.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
, 1983, “
Velocity Measurements in Steady Flow Through Axisymmetric Stenoses at Moderate Reynolds Numbers
,”
J. Biomech.
0021-9290,
16
(
7
), pp.
505
516
.
13.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
, 1983, “
Flow Disturbance Measurements Through a Constricted Tube at Moderate Reynolds Numbers
,”
J. Biomech.
0021-9290,
16
(
12
), pp.
955
963
.
14.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
, 1984, “
Pulsatile Poststenotic Flow Studies With Laser Doppler Anemometry
,”
J. Biomech.
0021-9290,
17
(
9
), pp.
695
705
.
15.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fisher
,
P. F.
, 2007, “
Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow
,”
J. Fluid Mech.
0022-1120,
582
, pp.
253
280
.
16.
Gårdhagen
,
R.
,
Lantz
,
J.
,
Carlsson
,
F.
, and
Karlsson
,
M.
, 2009, “
Large Eddy Simulation of Transitional Pipe Flow
,” submitted.
17.
Banks
,
J.
, and
Bressloff
,
N. W.
, 2007, “
Turbulence Modeling in Three-Dimensional Stenosed Arterial Bifurcations
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
1
), pp.
40
50
.
18.
Ryval
,
J.
,
Stratman
,
A. G.
, and
Steinman
,
D. A.
, 2004, “
Two-Equation Turbulence Modeling of Pulsatile Flow in a Stenosed Tube
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
625
635
.
19.
Varghese
,
S. S.
, and
Frankel
,
S. H.
, 2003, “
Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
445
460
.
20.
2006, FLUENT 6.3 User’s Guide.
21.
Kim
,
S. -E.
, 2004, “
Large Eddy Simulation Using Unstructured Meshes and Dynamic Subgrid-Scale Turbulence Models
,” AIAA Paper No. 2004-2548.
22.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
(
7
), pp.
1760
1765
.
23.
Lilly
,
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
0899-8213,
4
(
3
), pp.
633
635
.
24.
Mathey
,
F.
,
Cokljat
,
D.
,
Bertoglio
,
J. P.
, and
Sergent
,
E.
, 2003, “
Specification of LES Inlet Boundary Condition Using Vortex Method
,”
Proceedings of the Fourth International Symposium in Turbulence, Heat and Mass Transfer
,
Begell House, Inc.
,
Antalya, Turkey
.
25.
Sergent
,
E.
, 2002, “
Vers une methodologie de couplage entre la Simulation des Grandes Echelles et les modeles statistiques
,” Ph.D. thesis, L’Ecole Centrale de Lyon, Lyon, France.
26.
Mittal
,
R.
,
Simmons
,
S. P.
, and
Najjar
,
F.
, 2003, “
Numerical Study of Pulsatile Flow in a Constricted Channel
,”
J. Fluid Mech.
0022-1120,
485
, pp.
337
378
.
27.
Levesque
,
M. J.
, and
Nerem
,
R. M.
, 1985, “
The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress
,”
ASME J. Biomech. Eng.
0148-0731,
107
, pp.
341
347
.
You do not currently have access to this content.