In a crown system, core fracture requires replacement of the restoration. Understanding maximum principal stress concentration in the veneered core of a tooth-crown system as a function of variations in clinically relevant parameters is crucial in the rational design of crown systems. This study evaluated the main and interacting effects of a set of clinical variables on the maximum principal stress (MPS) in the core of an anatomically correct veneer-core-cement-tooth model. A 3D CAD model of a mandibular first molar crown was generated; tooth preparation was modeled by reducing the proximal walls by 1.5 mm and the occlusal surface by 2.0 mm. A cemented veneered core crown was modeled on the preparation. This “crown system” permitted finite element model investigation of the main and interacting effects of proximal wall height reduction, core material, core thickness, cement modulus, cement thickness, and load position on the maximum stress distribution in a factorial design. Analysis of variance was used to identify the main and interacting influences on the level of MPS in the crown core. Statistical significance was set at p<0.05. MPS levels varied as a function of two-way interactions between the following: core thickness and load position; cement thickness and load position; cement modulus and load position; cement thickness and core thickness; and cement thickness and cement modulus; and also three-way interactions among the load position, core material, and proximal wall height reduction, and among the core thickness, cement thickness, and cement modulus. MPS in the crown-tooth system is influenced by the design parameters and also by the interaction among them. Hence, while the geometry of molar crowns is complex, these analyses identify the factors that influence MPS and suggest levels that will minimize the core MPS in future studies of crown design.

1.
Strub
,
J. R.
,
Rekow
,
E. D.
, and
Witkowski
,
S.
, 2006, “
Computer-Aided Design and Fabrication of Dental Restorations: Current Systems and Future Possibilities
,”
J. Am. Dent. Assoc.
0002-8177,
137
(
9
), pp.
1289
1296
.
2.
Kelly
,
J. R.
, 2004, “
Dental Ceramics: Current Thinking and Trends
,”
Dent. Clin. North Am.
0011-8532,
48
(
2
), pp.
513
530
.
3.
Wassermann
,
A.
,
Kaiser
,
M.
, and
Strub
,
J. R.
, 2006, “
Clinical Long-Term Results of VITA In-Ceram Classic Crowns and Fixed Partial Dentures: A Systematic Literature Review
,”
Int. J. Prosthodont
0893-2174,
19
(
4
), pp.
355
363
.
4.
Rekow
,
D.
,
Zhang
,
Y.
, and
Thompson
,
V.
, 2007, “
Can Material Properties Predict Survival of All-Ceramic Posterior Crowns?
,”
Compend. Contin. Educ. Dent.
0734-0338,
28
(
7
), pp.
362
368
.
5.
Rekow
,
D.
, and
Thompson
,
V. P.
, 2007, “
Engineering Long Term Clinical Success of Advanced Ceramic Prostheses
,”
J. Mater. Sci. Mater. Med.
,
18
(
1
), pp.
47
56
.
6.
Kim
,
B.
,
Zhang
,
Y.
,
Pines
,
M.
, and
Thompson
,
V. P.
, 2007, “
Fracture of Porcelain-Veneered Structures in Fatigue
,”
J. Dent. Res.
0022-0345,
86
(
2
), pp.
142
146
.
7.
Pjetursson
,
B. E.
,
Sailer
,
I.
,
Zwahlen
,
M.
, and
Hammerle
,
C. H.
, 2007, “
A Systematic Review of the Survival and Complication Rates of All-Ceramic and Metal-Ceramic Reconstructions After an Observation Period of at Least 3 Years. Part I: Single Crowns
,”
Clin. Oral Implants Res.
0905-7161,
18
(
3
), pp.
73
85
.
8.
Manicone
,
P. F.
,
Rossi Iommetti
,
P.
, and
Raffaelli
,
L.
, 2007, “
An Overview of Zirconia Ceramics: Basic Properties and Clinical Applications
,”
J. Dent.
0300-5712,
35
(
11
), pp.
819
826
.
9.
Conrad
,
H. J.
,
Seong
,
W. J.
, and
Pesun
,
I. J.
, 2007, “
Current Ceramic Materials and Systems With Clinical Recommendations: A Systematic Review
,”
J. Prosthet. Dent.
0022-3913,
98
(
5
), pp.
389
404
.
10.
Larsson
,
C.
,
Vult von Steyern
,
P.
,
Sunzel
,
B.
, and
Nilner
,
K.
, 2006, “
All-Ceramic Two- to Five-Unit Implant-Supported Reconstructions. A Randomized, Prospective Clinical Trial
,”
Swed Dent. J.
0347-9994,
30
(
2
), pp.
45
53
.
11.
Sailer
,
I.
,
Feher
,
A.
,
Filser
,
F.
,
Gauckler
,
L. J.
,
Luthy
,
H.
, and
Hammerle
,
C. H.
, 2007, “
Five-Year Clinical Results of Zirconia Frameworks for Posterior Fixed Partial Dentures
,”
Int. J. Prosthodont
0893-2174,
20
(
4
), pp.
383
388
.
12.
Sailer
,
I.
,
Pjetursson
,
B. E.
,
Zwahlen
,
M.
, and
Hammerle
,
C. H.
, 2007, “
A Systematic Review of the Survival and Complication Rates of All-Ceramic and Metal-Ceramic Reconstructions After an Observation Period of at Least 3 Years. Part II: Fixed Dental Prostheses
,”
Clin. Oral Implants Res.
0905-7161,
18
(
3
), pp.
86
96
.
13.
Raigrodski
,
A. J.
,
Chiche
,
G. J.
,
Potiket
,
N.
,
Hochstedler
,
J. L.
,
Mohamed
,
S. E.
,
Billiot
,
S.
, and
Mercante
,
D. E.
, 2006, “
The Efficacy of Posterior Three-Unit Zirconium-Oxide-Based Ceramic Fixed Partial Dental Prostheses: A Prospective Clinical Pilot Study
,”
J. Prosthet. Dent.
0022-3913,
96
(
4
), pp.
237
244
.
14.
Kelly
,
J. R.
, 1999, “
Clinically Relevant Approach to Failure Testing of All-Ceramic Restorations
,”
J. Prosthet. Dent.
0022-3913,
81
(
6
), pp.
652
661
.
15.
Coelho
,
P. G.
,
Bonfante
,
E. A.
,
Silva
,
N. R.
,
Rekow
,
E. D.
, and
Thompson
,
V. P.
, 2009, “
Laboratory Simulation of Y-TZP All-Ceramic Crown Clinical Failures
,”
J. Dent. Res.
0022-0345,
88
(
4
), pp.
382
386
.
16.
Coelho
,
P. G.
,
Silva
,
N. R.
,
Bonfante
,
E. A.
,
Guess
,
P. C.
,
Rekow
,
E. D.
, and
Thompson
,
V. P.
, 2009, “
Fatigue Testing of Two Porcelain-Zirconia All-Ceramic Crown Systems
,”
Dent. Mater.
0109-5641,
25
(
9
), pp.
1122
1127
.
17.
Rekow
,
E. D.
,
Harsono
,
M.
,
Janal
,
M.
,
Thompson
,
V. P.
, and
Zhang
,
G.
, 2006, “
Factorial Analysis of Variables Influencing Stress in All-Ceramic Crowns
,”
Dent. Mater.
0109-5641,
22
(
2
), pp.
125
132
.
18.
Proos
,
K. A.
,
Swain
,
M. V.
,
Ironside
,
J.
, and
Steven
,
G. P.
, 2002, “
Finite Element Analysis Studies of a Metal-Ceramic Crown on a First Premolar Tooth
,”
Int. J. Prosthodont
0893-2174,
15
(
6
), pp.
521
527
.
19.
Proos
,
K. A.
,
Swain
,
M. V.
,
Ironside
,
J.
, and
Steven
,
G. P.
, 2002, “
Finite Element Analysis Studies of an All-Ceramic Crown on a First Premolar
,”
Int. J. Prosthodont
0893-2174,
15
(
4
), pp.
404
412
.
20.
Proos
,
K. A.
,
Swain
,
M. V.
,
Ironside
,
J.
, and
Steven
,
G. P.
, 2003, “
Influence of Cement on a Restored Crown of a First Premolar Using Finite Element Analysis
,”
Int. J. Prosthodont
0893-2174,
16
(
1
), pp.
82
90
.
21.
Coelho
,
P. G.
,
Silva
,
N. R.
,
Thompson
,
V. P.
,
Rekow
,
D.
, and
Zhang
,
G.
, 2009, “
Effect of Proximal Wall Height on All-Ceramic Crown Core Stress Distribution: A Finite Element Analysis Study
,”
Int. J. Prosthodont
0893-2174,
22
(
1
), pp.
78
86
.
22.
De Jager
,
N.
,
Pallav
,
P.
,
Feilzer
,
A. J.
,
De Jager
,
N.
,
Pallav
,
P.
, and
Feilzer
,
A. J.
, 2005, “
The Influence of Design Parameters on the FEA-Determined Stress Distribution in CAD-CAM Produced All-Ceramic Dental Crowns
,”
Dent. Mater.
0109-5641,
21
(
3
), pp.
242
251
.
23.
Rafferty
,
B. T.
,
Janal
,
M. N.
,
Zavanelli
,
R. A.
,
Silva
,
N. R.
,
Rekow
,
E. D.
,
Thompson
,
V. P.
, and
Coelho
,
P. G.
, 2009, “
Design Features of a Three-Dimensional Molar Crown and Related Maximum Principal Stress. A Finite Element Model Study
,”
Dent. Mater.
0109-5641,
26
, pp.
156
163
.
24.
Anderson
,
R. J.
,
Janes
,
G. R.
,
Sabella
,
L. R.
, and
Morris
,
H. F.
, 1993, “
Comparison of the Performance on Prosthodontic Criteria of Several Alternative Alloys Used for Fixed Crown and Partial Denture Restorations: Department of Veterans Affairs Cooperative Studies Project 147
,”
J. Prosthet. Dent.
0022-3913,
69
(
1
), pp.
1
8
.
25.
Walter
,
M.
,
Reppel
,
P. D.
,
Boning
,
K.
, and
Freesmeyer
,
W. B.
, 1999, “
Six-Year Follow-Up of Titanium and High-Gold Porcelain-Fused-to-Metal Fixed Partial Dentures
,”
J. Oral Rehabil.
0305-182X,
26
(
2
), pp.
91
96
.
26.
Hojjatie
,
B.
, and
Anusavice
,
K. J.
, 1990, “
Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns
,”
J. Biomech.
0021-9290,
23
(
11
), pp.
1157
1166
.
27.
Imanishi
,
A.
,
Nakamura
,
T.
, and
Ohyama
,
T.
, 2003, “
3-D Finite Element Analysis of All-Ceramic Posterior Crowns
,”
J. Oral Rehabil.
0305-182X,
30
(
8
), pp.
818
822
.
28.
Nakamura
,
T.
,
Imanishi
,
A.
,
Kashima
,
H.
,
Ohyama
,
T.
, and
Ishigaki
,
S.
, 2001, “
Stress Analysis of Metal-Free Polymer Crowns Using the Three-Dimensional Finite Element Method
,”
Int. J. Prosthodont
0893-2174,
14
(
5
), pp.
401
405
.
29.
Griggs
,
J. A.
, 2007, “
Recent Advances in Materials for All-Ceramic Restorations
,”
Dent. Clin. North Am.
0011-8532,
51
(
3
), pp.
713
727
.
30.
Thompson
,
V. P.
, and
Rekow
,
D. E.
, 2004, “
Dental Ceramics and the Molar Crown Testing Ground
,”
J. Appl. Oral Sci.
,
12
, pp.
26
36
.
31.
Kim
,
J. H.
,
Kim
,
J. W.
,
Myoung
,
S. W.
,
Pines
,
M.
, and
Zhang
,
Y.
, 2008, “
Damage Maps for Layered Ceramics Under Simulated Mastication
,”
J. Dent. Res.
0022-0345,
87
(
7
), pp.
671
675
.
32.
Santana
,
T.
,
Zhang
,
Y.
,
Guess
,
P.
,
Thompson
,
V. P.
,
Rekow
,
E. D.
, and
Silva
,
N. R.
, 2009, “
Off-Axis Sliding Contact Reliability and Failure Modes of Veneered Alumina and Zirconia
,”
Dent. Mater.
0109-5641,
25
, pp.
892
898
.
33.
Wang
,
Y.
,
Lee
,
J. J.
,
Lloyd
,
I. K.
,
Wilson
,
O. C.
, Jr.
,
Rosenblum
,
M.
, and
Thompson
,
V.
, 2007, “
High Modulus Nanopowder Reinforced Dimethacrylate Matrix Composites for Dental Cement Applications
,”
J. Biomed. Mater. Res. Part A
1549-3296,
82
(
3
), pp.
651
657
.
34.
Silva
,
N. R.
,
de Souza
,
G. M.
,
Coelho
,
P. G.
,
Stappert
,
C. F.
,
Clark
,
E. A.
,
Rekow
,
E. D.
, and
Thompson
,
V. P.
, 2008, “
Effect of Water Storage Time and Composite Cement Thickness on Fatigue of a Glass-Ceramic Trilayer System
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
84
(
1
), pp.
117
123
.
35.
Malament
,
K. A.
, and
Socransky
,
S. S.
, 2001, “
Survival of Dicor Glass-Ceramic Dental Restorations Over 16 Years. Part III: Effect of Luting Agent and Tooth or Tooth-Substitute Core Structure
,”
J. Prosthet. Dent.
0022-3913,
86
(
5
), pp.
511
519
.
36.
Örtorp
,
A.
,
Kihl
,
M. L.
, and
Carlsson
,
G. E.
, 2009, “
A 3-Year Retrospective and Clinical Follow-Up Study of Zirconia Single Crowns Performed in a Private Practice
,”
J. Dent.
0300-5712,
37
(
9
), pp.
731
736
.
37.
Kim
,
J. W.
,
Kim
,
J. H.
,
Thompson
,
V. P.
, and
Zhang
,
Y.
, 2007, “
Sliding Contact Fatigue Damage in Layered Ceramic Structures
,”
J. Dent. Res.
0022-0345,
86
(
11
), pp.
1046
1050
.
38.
Kim
,
J. W.
,
Kim
,
J. H.
,
Janal
,
M. N.
, and
Zhang
,
Y.
, 2008, “
Damage Maps of Veneered Zirconia Under Simulated Mastication
,”
J. Dent. Res.
0022-0345,
87
(
12
), pp.
1127
1132
.
You do not currently have access to this content.