Spine degeneration is a pathology that will affect 80% of the population. Since the intervertebral disks play an important role in transmitting loads through the spine, the aim of this study was to evaluate the biomechanical impact of disk properties on the load carried by healthy (Thompson grade I) and degenerated (Thompson grades III and IV) disks. A three-dimensional parametric poroelastic finite element model of the L4/L5 motion segment was developed. Grade I, grade II, and grade IV disks were modeled by altering the biomechanical properties of both the annulus and nucleus. Models were validated using published creep experiments, in which a constant compressive axial stress of 0.35 MPa was applied for 4 h. Pore pressure (PP) and effective stress (SE) were analyzed as a function of time following loading application (1 min, 5 min, 45 min, 125 min, and 245 min) and discal region along the midsagittal profile for each disk grade. A design of experiments was further implemented to analyze the influence of six disk parameters (disk height (H), fiber proportion (%F), drained Young's modulus (Ea,En), and initial permeability (ka,kn) of both the annulus and nucleus) on load-sharing for disk grades I and IV. Simulations of grade I, grade III, and grade IV disks agreed well with the available published experimental data. Disk height (H) had a significant influence (p<0.05) on the PP and SE during the entire loading history for both healthy and degenerated disk models. Young’s modulus of the annulus (Ea) significantly affected not only SE in the annular region for both disk grades in the initial creep response but also SE in the nucleus zone for degenerated disks with further creep response. The nucleus and annulus permeabilities had a significant influence on the PP distribution for both disk grades, but this effect occurred at earlier stages of loading for degenerated than for healthy disk models. This is the first study that investigates the biomechanical influence of both geometrical and material disk properties on the load transfer of healthy and degenerated disks. Disk height is a significant parameter for both healthy and degenerated disks during the entire loading. Changes in the annulus stiffness, as well as in the annulus and nucleus permeability, control load-sharing in different ways for healthy and degenerated disks.

1.
Raj
,
P. P.
, 2008, “
Intervertebral Disc: Anatomy-Physiology-Pathophysiology-Treatment
,”
Pain Pract.
,
8
(
1
), pp.
18
44
.
2.
Andersson
,
G. B.
,
An
,
H. S.
,
Oegema
,
T. R.
, Jr.
, and
Setton
,
L. A.
, 2006, “
Intervertebral Disc Degeneration. Summary of an Aaos/Nih/Ors Workshop, September 2005
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
88
(
4
), pp.
895
899
.
3.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Rawlins
,
B. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1998, “
Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression
,”
J. Biomech.
0021-9290,
31
(
6
), pp.
535
544
.
4.
McNally
,
D. S.
,
Shackleford
,
I. M.
,
Goodship
,
A. E.
, and
Mulholland
,
R. C.
, 1996, “
In Vivo Stress Measurement Can Predict Pain on Discography
,”
Spine
0362-2436,
21
(
22
), pp.
2580
2587
.
5.
McNally
,
D. S.
, and
Adams
,
M. A.
, 1992, “
Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry
,”
Spine
0362-2436,
17
(
1
), pp.
66
73
.
6.
Horst
,
M.
, and
Brinckmann
,
P.
, 1981, “
1980 Volvo Award in Biomechanics. Measurement of the Distribution of Axial Stress on the End-Plate of the Vertebral Body
,”
Spine
0362-2436,
6
(
3
), pp.
217
232
.
7.
Kim
,
Y. E.
,
Goel
,
V. K.
,
Weinstein
,
J. N.
, and
Lim
,
T. H.
, 1991, “
Effect of Disc Degeneration at One Level on the Adjacent Level in Axial Mode
,”
Spine
0362-2436,
16
(
3
), pp.
331
335
.
8.
Kurowski
,
P.
, and
Kubo
,
A.
, 1986, “
The Relationship of Degeneration of the Intervertebral Disc to Mechanical Loading Conditions on Lumbar Vertebrae
,”
Spine
0362-2436,
11
(
7
), pp.
726
731
.
9.
El-Rich
,
M.
,
Arnoux
,
P. J.
,
Wagnac
,
E.
,
Brunet
,
C.
, and
Aubin
,
C. E.
, 2009, “
Finite Element Investigation of the Loading Rate Effect on the Spinal Load-Sharing Changes Under Impact Conditions
,”
J. Biomech.
0021-9290,
42
(
9
), pp.
1252
1262
.
10.
Schmidt
,
H.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H. J.
, 2007, “
The Risk of Disc Prolapses With Complex Loading in Different Degrees of Disc Degeneration—A Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
9
), pp.
988
998
.
11.
Biot
,
M. A.
, 1941, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
0021-8979,
12
(
2
), pp.
155
164
.
12.
Argoubi
,
M.
, and
Shirazi-Adl
,
A.
, 1996, “
Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression
,”
J. Biomech.
0021-9290,
29
(
10
), pp.
1331
1339
.
13.
Laible
,
J. P.
,
Pflaster
,
D. S.
,
Krag
,
M. H.
,
Simon
,
B. R.
, and
Haugh
,
L. D.
, 1993, “
A Poroelastic-Swelling Finite Element Model With Application to the Intervertebral Disc
,”
Spine
0362-2436,
18
(
5
), pp.
659
670
.
14.
Lee
,
K. K.
, and
Teo
,
E. C.
, 2004, “
Poroelastic Analysis of Lumbar Spinal Stability in Combined Compression and Anterior Shear
,”
J. Spinal Disord. Tech.
,
17
(
5
), pp.
429
438
.
15.
Lotz
,
J. C.
,
Colliou
,
O. K.
,
Chin
,
J. R.
,
Duncan
,
N. A.
, and
Liebenberg
,
E.
, 1998, “
Compression-Induced Degeneration of the Intervertebral Disc: An in Vivo Mouse Model and Finite-Element Study
,”
Spine
0362-2436,
23
(
23
), pp.
2493
2506
.
16.
Simon
,
B. R.
,
Wu
,
J. S.
,
Carlton
,
M. W.
,
Kazarian
,
L. E.
,
France
,
E. P.
,
Evans
,
J. H.
, and
Zienkiewicz
,
O. C.
, 1985, “
Poroelastic Dynamic Structural Models of Rhesus Spinal Motion Segments
,”
Spine
0362-2436,
10
(
6
), pp.
494
507
.
17.
Natarajan
,
R. N.
,
Williams
,
J. R.
, and
Andersson
,
G. B.
, 2004, “
Recent Advances in Analytical Modeling of Lumbar Disc Degeneration
,”
Spine
0362-2436,
29
(
23
), pp.
2733
2741
.
18.
Hibbitt Karlsson and Sorensen Inc.
, 2003, ABAQUS Theory Manual, Version 6.7.1.
19.
Little
,
J. P.
,
Pearcy
,
M. J.
, and
Pettet
,
G. J.
, 2007, “
Parametric Equations to Represent the Profile of the Human Intervertebral Disc in the Transverse Plane
,”
Med. Biol. Eng. Comput.
0140-0118,
45
(
10
), pp.
939
945
.
20.
Aldridge
,
J. S.
,
Reckwerdt
,
P. J.
, and
Mackie
,
T. R.
, 1999, “
A Proposal for a Standard Electronic Anthropomorphic Phantom for Radiotherapy
,”
Med. Phys.
0094-2405,
26
(
9
), pp.
1901
1903
.
21.
Chiu
,
E. J.
, 1998, “
Characterization of the Human Intervertebral Disc With Magnetic Resonance Imaging
,” Ph.D. thesis, University of California-Berkeley, Berkeley, CA.
22.
Lu
,
Y. M.
,
Hutton
,
W. C.
, and
Gharpuray
,
V. M.
, 1996, “
Can Variations in Intervertebral Disc Height Affect the Mechanical Function of the Disc?
,”
Spine
0362-2436,
21
(
19
), pp.
2208
2216
.
23.
Fazzalari
,
N. L.
,
Parkinson
,
I. H.
,
Fogg
,
Q. A.
, and
Sutton-Smith
,
P.
, 2006, “
Antero-Postero Differences in Cortical Thickness and Cortical Porosity of T12 to L5 Vertebral Bodies
,”
Jt., Bone Spine
1297-319X,
73
(
3
), pp.
293
297
.
24.
Ferguson
,
S. J.
,
Ito
,
K.
, and
Nolte
,
L. P.
, 2004, “
Fluid Flow and Convective Transport of Solutes Within the Intervertebral Disc
,”
J. Biomech.
0021-9290,
37
(
2
), pp.
213
221
.
25.
Lu
,
Y. M.
,
Hutton
,
W. C.
, and
Gharpuray
,
V. M.
, 1996, “
Do Bending, Twisting, and Diurnal Fluid Changes in the Disc Affect the Propensity to Prolapse? A Viscoelastic Finite Element Model
,”
Spine
0362-2436,
21
(
22
), pp.
2570
2579
.
26.
Smith
,
L. J.
, and
Fazzalari
,
N. L.
, 2009, “
The Elastic Fibre Network of the Human Lumbar Anulus Fibrosus: Architecture, Mechanical Function and Potential Role in the Progression of Intervertebral Disc Degeneration
,”
Eur. Spine J.
0940-6719,
18
(
4
), pp.
439
448
.
27.
Aharinejad
,
S.
,
Bertagnoli
,
R.
,
Wicke
,
K.
,
Firbas
,
W.
, and
Schneider
,
B.
, 1990, “
Morphometric Analysis of Vertebrae and Intervertebral Discs as a Basis of Disc Replacement
,”
Am. J. Anat.
0002-9106,
189
(
1
), pp.
69
76
.
28.
Yahia
,
L. H.
,
Audet
,
J.
, and
Drouin
,
G.
, 1991, “
Rheological Properties of the Human Lumbar Spine Ligaments
,”
ASME J. Biomech. Eng.
0148-0731,
13
(
5
), pp.
399
406
.
29.
Johannessen
,
W.
, and
Elliott
,
D. M.
, 2005, “
Effects of Degeneration on the Biphasic Material Properties of Human Nucleus Pulposus in Confined Compression
,”
Spine
0362-2436,
30
(
24
), pp.
E724
E729
.
30.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
V. C.
, and
Rawlins
,
B. A.
, 1999, “
The Anisotropic Hydraulic Permeability of Human Lumbar Annulus Fibrosus. Influence of Age, Degeneration, Direction, and Water Content
,”
Spine
0362-2436,
24
(
23
), pp.
2449
2455
.
31.
Natarajan
,
R. N.
,
Williams
,
J. R.
,
Lavender
,
S. A.
,
An
,
H. S.
, and
Andersson
,
G. B.
, 2008, “
Relationship Between Disc Injury and Manual Lifting: A Poroelastic Finite Element Model Study
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
222
(
2
), pp.
195
207
.
32.
Thompson
,
J. P.
,
Pearce
,
R. H.
,
Schechter
,
M. T.
,
Adams
,
M. E.
,
Tsang
,
I. K.
, and
Bishop
,
P. B.
, 1990, “
Preliminary Evaluation of a Scheme for Grading the Gross Morphology of the Human Intervertebral Disc
,”
Spine
0362-2436,
15
(
5
), pp.
411
415
.
33.
Wilke
,
H. J.
,
Rohlmann
,
F.
,
Neidlinger-Wilke
,
C.
,
Werner
,
K.
,
Claes
,
L.
, and
Kettler
,
A.
, 2006, “
Validity and Interobserver Agreement of a New Radiographic Grading System for Intervertebral Disc Degeneration: Part I. Lumbar Spine
,”
Eur. Spine J.
0940-6719,
15
(
6
), pp.
720
730
.
34.
Nachemson
,
A. L.
, 1981, “
Disc Pressure Measurements
,”
Spine
0362-2436,
6
(
1
), pp.
93
97
.
35.
Natarajan
,
R. N.
, and
Andersson
,
G. B.
, 1999, “
The Influence of Lumbar Disc Height and Cross-Sectional Area on the Mechanical Response of the Disc to Physiologic Loading
,”
Spine
0362-2436,
24
(
18
), pp.
1873
1881
.
36.
Hsieh
,
A. H.
,
Wagner
,
D. R.
,
Cheng
,
L. Y.
, and
Lotz
,
J. C.
, 2005, “
Dependence of Mechanical Behavior of the Murine Tail Disc on Regional Material Properties: A Parametric Finite Element Study
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
7
), pp.
1158
1167
.
37.
Malandrino
,
A.
,
Planell
,
J. A.
, and
Lacroix
,
D.
, 2009, “
Statistical Factorial Analysis on the Poroelastic Material Properties Sensitivity of the Lumbar Intervertebral Disc Under Compression, Flexion and Axial Rotation
,”
J. Biomech.
0021-9290,
42
(
16
), pp.
2780
2788
.
38.
Rao
,
A. A.
, and
Dumas
,
G. A.
, 1991, “
Influence of Material Properties on the Mechanical Behaviour of the L5-S1 Intervertebral Disc in Compression: A Nonlinear Finite Element Study
,”
ASME J. Biomech. Eng.
0148-0731,
13
(
2
), pp.
139
151
.
39.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F. A.
, 1997, “
Finite Element Model of the Human Lower Cervical Spine: Parametric Analysis of the C4-C6 Unit
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
1
), pp.
87
92
.
40.
Adams
,
M. A.
, and
Roughley
,
P. J.
, 2006, “
What Is Intervertebral Disc Degeneration, and What Causes It?
,”
Spine
0362-2436,
31
(
18
), pp.
2151
2161
.
41.
Adams
,
M. A.
, and
Hutton
,
W. C.
, 1980, “
The Effect of Posture on the Role of the Apophysial Joints in Resisting Intervertebral Compressive Forces
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
62
(
3
), pp.
358
362
.
42.
Vernon-Roberts
,
B.
, and
Pirie
,
C. J.
, 1977, “
Degenerative Changes in the Intervertebral Discs of the Lumbar Spine and Their Sequelae
,”
Rheumatol. Rehabil.
0300-3396,
16
(
1
), pp.
13
21
.
43.
Fujiwara
,
A.
,
Tamai
,
K.
,
Yamato
,
M.
,
An
,
H. S.
,
Yoshida
,
H.
,
Saotome
,
K.
, and
Kurihashi
,
A.
, 1999, “
The Relationship Between Facet Joint Osteoarthritis and Disc Degeneration of the Lumbar Spine: An MRI Study
,”
Eur. Spine J.
0940-6719,
8
(
5
), pp.
396
401
.
44.
Kalichman
,
L.
, and
Hunter
,
D. J.
, 2007, “
Lumbar Facet Joint Osteoarthritis: A Review
,”
Semin Arthritis Rheum.
0049-0172,
37
(
2
), pp.
69
80
.
45.
Shirazi-Adl
,
A.
, 1992, “
Finite-Element Simulation of Changes in the Fluid Content of Human Lumbar Discs
,”
Spine
0362-2436,
17
(
2
), pp.
206
212
.
46.
Rohlmann
,
A.
,
Zander
,
T.
,
Schmidt
,
H.
,
Wilke
,
H. -J.
, and
Bergmann
,
G.
, 2006, “
Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method
,”
J. Biomech.
0021-9290,
39
(
13
), pp.
2484
2490
.
You do not currently have access to this content.