Pulmonary embolism (PE) is a significant medical problem that results in over 300,000 fatalities per year. A common preventative treatment for PE is the insertion of a metallic filter into the inferior vena cava that traps thrombi before they reach the lungs. The goal of this work is to use methods of mathematical modeling and design optimization to determine the configuration of trapped thrombi that minimizes the hemodynamic disruption. The resulting configuration has implications for constructing an optimally designed vena cava filter. Computational fluid dynamics is coupled with a nonlinear optimization algorithm to determine the optimal configuration of a trapped model thrombus in the inferior vena cava. The location and shape of the thrombus are parametrized, and an objective function, based on wall shear stresses, determines the worthiness of a given configuration. The methods are fully automated and demonstrate the capabilities of a design optimization framework that is broadly applicable. Changes to thrombus location and shape alter the velocity contours and wall shear stress profiles significantly. For vena cava filters that trap two thrombi simultaneously, the undesirable flow dynamics past one thrombus can be mitigated by leveraging the flow past the other thrombus. Streamlining the shape of the thrombus trapped along the cava wall reduces the disruption to the flow but increases the area exposed to low wall shear stress. Computer-based design optimization is a useful tool for developing vena cava filters. Characterizing and parametrizing the design requirements and constraints is essential for constructing devices that address clinical complications. In addition, formulating a well-defined objective function that quantifies clinical risks and benefits is needed for designing devices that are clinically viable.

1.
Mackman
,
N.
, 2008, “
Triggers, Targets and Treatments for Thrombosis
,”
Nature (London)
0028-0836,
451
, pp.
914
918
.
2.
Wakefield
,
T. W.
,
Caprini
,
J.
, and
Comerota
,
A. J.
, 2008, “
Thromboembolic Disease
,”
Curr. Probl Surg.
0011-3840,
45
, pp.
844
899
.
3.
Heit
,
J. A.
,
Cohen
,
A. T.
, and
Anderson
,
F. J.
, 2005, “
Estimated Annual Number of Incident and Recurrent, Non-Fatal Venous Thromboembolism (VTE) Events in the U.S
,”
Blood
0006-4971,
106
, p.
910
.
4.
Lee
,
P.
,
Raizada
,
A.
, and
Ciocca
,
R.
, 2009, “
Growing Utilization of IVC Filter Placement From 2001–2005: Analysis of NIS
,”
Abstract for the Society for Clinical Vascular Surgery 2009 Meeting
, Jan. 22.
5.
Kroll
,
M. H.
,
Hellums
,
J. D.
,
Mcintire
,
L. V.
,
Schafer
,
A. I.
, and
Moake
,
J. L.
, 1996, “
Platelets and Shear Stress
,”
Blood
0006-4971,
88
, p.
1525
1541
.
6.
Lowe
,
G. D.
, 2004, “
Virchow’s Triad Revisited: Abnormal Flow
,”
Pathophysiol. Haemost. Thromb.
,
33
, pp.
455
457
.
7.
Wang
,
S. L.
,
Timmermans
,
H. A.
, and
Kaufman
,
J. A.
, 2007, “
Estimation of Trapped Thrombus Volumes in Retrievable Inferior Vena Cava Filters: A Visual Scale
,”
J. Vasc. Interv. Radiol.
1051-0443,
18
, pp.
273
276
.
8.
Marsden
,
A. L.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
, 2008, “
A Computational Framework for Derivative-Free Optimization of Cardiovascular Geometries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
197
, pp.
1890
1905
.
9.
Pekkan
,
K.
,
Whited
,
B.
,
Kanter
,
K.
,
Sharma
,
S.
,
de Zelicourt
,
D.
,
Sundareswaran
,
K.
,
Frakes
,
D.
,
Rossignac
,
J.
, and
Yoganathan
,
A. P.
, 2008, “
Patient-Specific Surgical Planning and Hemodynamic Computational Fluid Dynamics Optimization Through Free-Form Haptic Anatomy Editing Tool (SURGEM)
,”
Med. Biol. Eng. Comput.
0140-0118,
46
(
11
), pp.
1139
52
.
10.
Timmins
,
L. H.
,
Moreno
,
M. R.
,
Meyer
,
C. A.
,
Criscione
,
J. C.
,
Rachev
,
A.
, and
Moore
,
J. E.
, Jr.
, 2007, “
Stented Artery Biomechanics and Device Design Optimization
,”
Med. Biol. Eng. Comput.
0140-0118,
45
, pp.
505
513
.
11.
De Beule
,
M.
,
Van Cauter
,
S.
,
Mortier
,
P.
,
Van Loo
,
D.
,
Van Impe
,
R.
,
Verdonck
,
P.
, and
Verhegghe
,
B.
, 2009, “
Virtual Optimization of Self-Expandable Braided Wire Stents
,”
Med. Eng. Phys.
1350-4533,
31
(
4
), pp.
448
453
.
12.
Srinivas
,
K.
,
Nakayama
,
T.
,
Ohta
,
M.
,
Obayashi
,
S.
, and
Yamaguchi
,
T.
, 2008, “
Studies on Design Optimization of Coronary Stents
,”
ASME J. Med. Devices
1932-6181,
2
(
1
), p.
011004
.
13.
Stewart
,
S. F. C.
,
Robinson
,
R. A.
,
Nelson
,
R. A.
, and
Malinauskas
,
R. A.
, 2008, “
Effects of Thrombosed Vena Cava Filters on Blood Flow: Flow Visualization and Numerical Modeling
,”
Ann. Biomed. Eng.
0090-6964,
36
(
11
), pp.
1764
1781
.
14.
Singer
,
M. A.
,
Henshaw
,
W. D.
, and
Wang
,
S. L.
, 2009, “
Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter
,”
J. Vasc. Interv. Radiol.
1051-0443,
20
, pp.
799
805
.
15.
Wang
,
S. L.
, and
Singer
,
M. A.
, 2010, “
Toward an Optimal Position for Inferior Vena Cava Filters: Computational Modeling of the Impact of Renal Vein Inflow With Celect and TrapEase Filters
,”
J. Vasc. Interv. Radiol.
1051-0443,
21
, pp.
367
374
.
16.
Singer
,
M. A.
, and
Wang
,
S. L.
, “
Modeling Flow Past a Tilted Vena Cava Filter
,”
J. Vasc. Interv. Radiol.
1051-0443, accepted for publication.
17.
Swaminathan
,
T. N.
,
Hu
,
H. H.
, and
Patel
,
A. A.
, 2006, “
Numerical Analysis of the Hemodynamics and Embolus Capture of a Greenfield Vena Cava Filter
,”
J. Biomed. Eng.
0141-5425,
128
, pp.
360
370
.
18.
Kaufman
,
J. A.
,
Waltman
,
A. C.
,
Rivitz
,
S. M.
, and
Geller
,
S. C.
, 1995, “
Anatomical Observations on the Renal Veins and Inferior Vena Cava at Magnetic Resonance Angiography
,”
Cardiovasc. Intervent Radiol.
0174-1551,
18
, pp.
153
157
.
19.
Chesshire
,
G. S.
, and
Henshaw
,
W. D.
, 1990, “
Composite Overlapping Meshes for the Solution of Partial Differential Equations
,”
J. Comput. Phys.
0021-9991,
90
(
1
), pp.
1
64
.
20.
Henshaw
,
W. D.
, 1994, “
A Fourth-Order Accurate Method for the Incompressible Navier-Stokes Equations on Overlapping Grids
,”
J. Comput. Phys.
0021-9991,
113
(
1
), pp.
13
25
.
21.
Henshaw
,
W. D.
, and
Petersson
,
N. A.
, 2003, “
A Split-Step Scheme for the Incompressible Navier-Stokes Equations
,”
Numerical Simulation of Incompressible Flow
,
M. M.
Hafez
, ed.,
World Scientific
,
Singapore
, pp.
108
125
.
22.
Gray
,
G. A.
, and
Kolda
,
T. G.
, 2006, “
Algorithm 856: APPSPACK 4.0: Asynchronous Parallel Pattern Search for Derivative-Free Optimization
,”
ACM Trans. Math. Softw.
0098-3500,
32
(
3
), pp.
485
507
.
23.
Kolda
,
T. G.
, 2005, “
Revisiting Asynchronous Parallel Pattern Search for Nonlinear Optimization
,”
SIAM J. Optim.
1052-6234,
16
(
2
), pp.
563
586
.
24.
Gray
,
G. A.
,
Kolda
,
T. G.
,
Sale
,
K. L.
, and
Young
,
M. M.
, 2004, “
Optimizing an Empirical Scoring Function for Transmembrane Protein Structure Determination
,”
INFORMS J. Comput.
1091-9856,
16
(
4
), pp.
406
418
.
25.
Leask
,
R. L.
,
Johnston
,
K. W.
, and
Ojha
,
M.
, 2004, “
Hemodynamic Effects of Clot Entrapment in the TrapEase Inferior Vena Cava Filter
,”
J. Vasc. Interv. Radiol.
1051-0443,
15
, pp.
485
490
.
26.
Wurzinger
,
L. J.
,
Blasberg
,
P.
, and
Schmid-Schonbein
,
H.
, 1985, “
Towards a Concept of Thrombosis in Accelerating Flow: Rheology, Fluid Dynamics and Biochemistry
,”
Biorheology
0006-355X,
22
, pp.
437
449
.
27.
Schoephoerster
,
R. T.
,
Oynes
,
F.
,
Nunez
,
G.
,
Kapadvanjwala
,
M.
, and
Dewanjee
,
M. K.
, 1993, “
Effects of Local Geometry and Fluid Dynamics on Regional Platelet Deposit on Artificial Surfaces
,”
Arterioscler. Thromb.
1049-8834,
13
, pp.
1806
1813
.
28.
Van Tricht
,
I.
,
De Wachter
,
D.
,
Tordoir
,
J.
, and
Verdonck
,
P.
, 2006, “
Comparison of the Hemodynamics in 6 mm and 4–7 mm Hemodialysis Grafts by Means of CFD
,”
J. Biomech.
0021-9290,
39
, pp.
226
236
.
29.
Harlal
,
A.
,
Ojha
,
M.
, and
Johnston
,
K. W.
, 2007, “
Vena Cava Filter Performance Based on Hemodynamics and Reported Thrombosis and Pulmonary Embolism Patterns
,”
J. Vasc. Interv. Radiol.
1051-0443,
18
, pp.
103
115
.
30.
Dintenfass
,
L.
, 1964, “
Rheological Approach to Thrombosis and Atherosclerosis
,”
Angiology
0003-3197,
15
, pp.
333
343
.
31.
Kaufman
,
J. A.
,
Rundback
,
J. H.
,
Kee
,
S. T.
,
Geerts
,
W.
,
Gillespie
,
D.
,
Kahn
,
S. R.
,
Kearon
,
C.
,
Rectenwald
,
J.
,
Rogers
,
F. B.
,
Stavropoulos
,
S. W.
,
Streiff
,
M.
,
Vedantham
,
S.
, and
Venbrux
,
A.
, 2009, “
Development of a Research Agenda for Inferior Vena Cava Filters: Proceedings From a Multidisciplinary Research Consensus Panel
,”
J. Vasc. Interv. Radiol.
1051-0443,
20
, pp.
697
707
.
32.
El Zahab
,
Z.
,
Divo
,
E.
, and
Kassab
,
A.
, 2010, “
Minimization of the Wall Shear Stress Gradients in Bypass Grafts Anastomoses Using Meshless CFD and Genetic Algorithms Optimization
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
13
(
1
), pp.
35
47
.
33.
Duraiswamy
,
N.
,
Cesar
,
J. M.
,
Schoephoerster
,
R. T.
, and
Moore
,
J. E.
, Jr.
, 2008, “
Effects of Stent Geometry on Local Flow Dynamics and Resulting Platelet Deposition in an In Vitro Model
,”
Biorheology
0006-355X,
45
, pp.
547
561
.
34.
Mejia
,
J.
,
Ruzzeh
,
B.
,
Mongrain
,
R.
,
Leask
,
R.
, and
Bertrand
,
O. F.
, 2009, “
Evaluation of the Effect of Stent Strut Profile on Shear Stress Distribution Using Statistical Moments
,”
Biomed. Eng. Online
1475-925X,
8
, pp.
1
10
.
35.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
282
, pp.
2035
2042
.
36.
Cheng
,
C. P.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
, 2003, “
Inferior Vena Caval Hemodynamics Quantified In Vivo at Rest and During Cycling Exercise Using Magnetic Resonance Imaging
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
284
, pp.
1161
1167
.
37.
Rahbar
,
E.
,
Moli
,
D.
, and
Moore
,
J.
, 2009, “
Three-Dimensional Analysis of Flow Disturbances From Clots in Vena Cava Filters
,”
J. Vasc. Interv. Radiol.
1051-0443,
20
(
2
), p.
S22
.
38.
Duraiswamy
,
N.
,
Schoephoerster
,
R. T.
, and
Moore
,
J. E.
, Jr.
, 2009, “
Comparison of Near-Wall Hemodynamic Parameters in Stented Artery Models
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
6
), p.
061006
.
39.
Roache
,
P. J.
, 1997, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
0066-4189,
29
, pp.
123
160
.
40.
Anand
,
M.
, and
Rajagopal
,
K. R.
, 2002, “
A Mathematical Model to Describe the Change in the Constitutive Character of Blood Due to Platelet Activation
,”
C. R. Mec.
1631-0721,
330
, pp.
557
562
.
You do not currently have access to this content.