Mechanical properties of the foot are responsible for its normal function and play a role in various clinical problems. Specifically, we are interested in quantification of foot mechanical properties to assist the development of computational models for movement analysis and detailed simulations of tissue deformation. Current available data are specific to a foot region and the loading scenarios are limited to a single direction. A data set that incorporates regional response, to quantify individual function of foot components, as well as the overall response, to illustrate their combined operation, does not exist. Furthermore, the combined three-dimensional loading scenarios while measuring the complete three-dimensional deformation response are lacking. When combined with an anatomical image data set, development of anatomically realistic and mechanically validated models becomes possible. Therefore, the goal of this study was to record and disseminate the mechanical response of a foot specimen, supported by imaging data. Robotic testing was conducted at the rear foot, forefoot, metatarsal heads, and the foot as a whole. Complex foot deformations were induced by single mode loading, e.g., compression, and combined loading, e.g., compression and shear. Small and large indenters were used for heel and metatarsal head loading, an elevated platform was utilized to isolate the rear foot and forefoot, and a full platform compressed the whole foot. Three-dimensional tool movements and reaction loads were recorded simultaneously. Computed tomography scans of the same specimen were collected for anatomical reconstruction a priori. The three-dimensional mechanical response of the specimen was nonlinear and viscoelastic. A low stiffness region was observed starting with contact between the tool and foot regions, increasing with loading. Loading and unloading responses portrayed hysteresis. Loading range ensured capturing the toe and linear regions of the load deformation curves for the dominant loading direction, with the rates approximating those of walking. A large data set was successfully obtained to characterize the overall and the regional mechanical responses of an intact foot specimen under single and combined loads. Medical imaging complemented the mechanical testing data to establish the potential relationship between the anatomical architecture and mechanical responses and to further develop foot models that are mechanically realistic and anatomically consistent. This combined data set has been documented and disseminated in the public domain to promote future development in foot biomechanics.

1.
Wright
,
I. C.
,
Neptune
,
R. R.
,
van den Bogert
,
A. J.
, and
Nigg
,
B. M.
, 2000, “
The Influence of Foot Positioning on Ankle Sprains
,”
J. Biomech.
0021-9290,
33
(
5
), pp.
513
519
.
2.
Budhabhatti
,
S. P.
,
Erdemir
,
A.
,
Petre
,
M.
,
Sferra
,
J.
,
Donley
,
B.
, and
Cavanagh
,
P. R.
, 2007, “
Finite Element Modeling of the First Ray of the Foot: A Tool for the Design of Interventions
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
5
), pp.
750
756
.
3.
Cheung
,
J. T.
, and
Zhang
,
M.
, 2008, “
Parametric Design of Pressure-Relieving Foot Orthosis Using Statistics-Based Finite Element Method
,”
Med. Eng. Phys.
1350-4533,
30
(
3
), pp.
269
277
.
4.
Ker
,
R. F.
,
Bennett
,
M. B.
,
Bibby
,
S. R.
,
Kester
,
R. C.
, and
Alexander
,
R. M.
, 1987, “
The Spring in the Arch of the Human Foot
,”
Nature (London)
0028-0836,
325
, pp.
147
149
.
5.
Fauth
,
A. R.
,
Hamel
,
J. A.
, and
Sharkey
,
N. A.
, 2004, “
In Vitro Measurements of First and Second Tarsometatarsal Joint Stiffness
,”
J. Appl. Biomech.
1065-8483,
20
(
1
), pp.
14
24
.
6.
Aerts
,
P.
,
Ker
,
R. F.
,
De Clercq
,
D.
,
Ilsley
,
D. W.
, and
Alexander
,
R. M.
, 1995, “
The Mechanical Properties of the Human Heel Pad: A Paradox Resolved
,”
J. Biomech.
0021-9290,
28
(
11
), pp.
1299
1308
.
7.
Challis
,
J. H.
,
Murdoch
,
C.
, and
Winter
,
S. L.
, 2008, “
Mechanical Properties of the Human Heel Pad: A Comparison Between Populations
,”
J. Appl. Biomech.
1065-8483,
24
(
4
), pp.
377
381
.
8.
Miller-Young
,
J. E.
,
Duncan
,
N. A.
, and
Baroud
,
G.
, 2002, “
Material Properties of the Human Calcaneal Fat Pad in Compression: Experiment and Theory
,”
J. Biomech.
0021-9290,
35
(
12
), pp.
1523
1531
.
9.
Ledoux
,
W. R.
, and
Blevins
,
J. J.
, 2007, “
The Compressive Material Properties of the Plantar Soft Tissue
,”
J. Biomech.
0021-9290,
40
(
13
), pp.
2975
2981
.
10.
Freed
,
A. D.
, and
Diethelm
,
K.
, 2006, “
Fractional Calculus in Biomechanics: A 3D Viscoelastic Model Using Regularized Fractional Derivative Kernels With Application to the Human Calcaneal Fat Pad
,”
Biomech. Model. Mechanobiol.
1617-7959,
5
(
4
), pp.
203
215
.
11.
Huang
,
C. K.
,
Kitaoka
,
H. B.
,
An
,
K. N.
, and
Chao
,
E. Y.
, 1993, “
Biomechanical Evaluation of Longitudinal Arch Stability
,”
Foot Ankle
0198-0211,
14
(
6
), pp.
353
7
.
12.
De Clercq
,
D.
,
Aerts
,
P.
, and
Kunnen
,
M.
, 1994, “
The Mechanical Characteristics of the Human Heel Pad During Foot Strike in Running: An In Vivo Cineradiographic Study
,”
J. Biomech.
0021-9290,
27
(
10
), pp.
1213
1222
.
13.
Petre
,
M.
,
Erdemir
,
A.
, and
Cavanagh
,
P. R.
, 2008, “
An MRI-Compatible Foot-Loading Device for Assessment of Internal Tissue Deformation
,”
J. Biomech.
0021-9290,
41
(
2
), pp.
470
474
.
14.
Yavuz
,
M.
,
Erdemir
,
A.
,
Botek
,
G.
,
Hirschman
,
G. B.
,
Bardsley
,
L.
, and
Davis
,
B. L.
, 2007, “
Peak Plantar Pressure and Shear Locations: Relevance to Diabetic Patients
,”
Diabetes Care
0149-5992,
30
(
10
), pp.
2643
2645
.
15.
Zou
,
D.
,
Mueller
,
M. J.
, and
Lott
,
D. J.
, 2007, “
Effect of Peak Pressure and Pressure Gradient on Subsurface Shear Stresses in the Neuropathic Foot
,”
J. Biomech.
0021-9290,
40
(
4
), pp.
883
890
.
16.
Leardini
,
A.
,
Benedetti
,
M. G.
,
Berti
,
L.
,
Bettinelli
,
D.
,
Nativo
,
R.
, and
Giannini
,
S.
, 2007, “
Rear-Foot, Mid-Foot and Fore-Foot Motion During the Stance Phase of Gait
,”
Gait and Posture
0966-6362,
25
(
3
), pp.
453
462
.
17.
Erdemir
,
A.
, and
Piazza
,
S. J.
, 2004, “
Changes in Foot Loading Following Plantar Fasciotomy: A Computer Modeling Study
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
237
243
.
18.
Camacho
,
D. L. A.
,
Ledoux
,
W. R.
,
Rohr
,
E. S.
,
Sangeorzan
,
B. J.
, and
Ching
,
R. P.
, 2002, “
A Three-Dimensional, Anatomically Detailed Foot Model: A Foundation for a Finite Element Simulation and Means of Quantifying Foot-Bone Position
,”
J. Rehabil. Res. Dev.
0748-7711,
39
(
3
), pp.
401
410
.
19.
Chen
,
W. P.
,
Tang
,
F. T.
, and
Ju
,
C. W.
, 2001, “
Stress Distribution of the Foot During Mid-Stance to Push-Off in Barefoot Gait: A 3-D Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
(
7
), pp.
614
620
.
20.
Cheung
,
J. T.
,
Zhang
,
M.
,
Leung
,
A. K.
, and
Fan
,
Y.
, 2005, “
Three-Dimensional Finite Element Analysis of the Foot During Standing—A Material Sensitivity Study
,”
J. Biomech.
0021-9290,
38
(
5
), pp.
1045
1054
.
21.
Gefen
,
A.
,
Megido-Ravid
,
M.
,
Itzchak
,
Y.
, and
Arcan
,
M.
, 2000, “
Biomechanical Analysis of the Three-Dimensional Foot Structure During Gait: A BasicTtool for Clinical Applications
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
6
), pp.
630
639
.
22.
Janda
,
S.
,
van der Helm
,
F. C. T.
, and
de Blok
,
S. B.
, 2003, “
Measuring Morphological Parameters of the Pelvic Floor for Finite Element Modelling Purposes
,”
J. Biomech.
0021-9290,
36
(
6
), pp.
749
757
.
23.
Klein Breteler
,
M. D.
,
Spoor
,
C. W.
, and
Van der Helm
,
F. C.
, 1999, “
Measuring Muscle and Joint Geometry Parameters of a Shoulder for Modeling Purposes
,”
J. Biomech.
0021-9290,
32
(
11
), pp.
1191
1197
.
24.
Lachowitzer
,
M. R.
,
Ranes
,
A.
, and
Yamaguchi
,
G. T.
, 2007, “
Musculotendon Parameters and Musculoskeletal Pathways Within the Human Foot
,”
J. Appl. Biomech.
1065-8483,
23
(
1
), pp.
20
41
.
25.
Noble
,
L. D.
,
Colbrunn
,
R. W.
,
Lee
,
D. G.
,
van den Bogert
,
A. J.
, and
Davis
,
B. L.
, “
Design and Validation of a General Purpose Robotic Testing System for Musculoskeletal Applications
,”
ASME J. Biomech. Eng.
0148-0731, accepted.
26.
Sirimamilla
,
P. A.
, 2008, “
Elaborate experimentation for mechanical characterization of the human foot using inverse finite element analysis
,” MS thesis, Case Western Reserve University, Cleveland, OH.
27.
Cavanagh
,
P. R.
, 1999, “
Plantar Soft Tissue Thickness During Ground Contact in Walking
,”
J. Biomech.
0021-9290,
32
(
6
), pp.
623
628
.
28.
Fung
,
Y. C.
, 1993,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
29.
Garner
,
B. A.
, and
Pandy
,
M. G.
, 1999, “
A Kinematic Model of the Upper Limb Based on the Visible Human Project (VHP) Image Dataset
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
2
(
2
), pp.
107
124
.
30.
Noakes
,
K. F.
,
Bissett
,
I. P.
,
Pullan
,
A. J.
, and
Cheng
,
L. K.
, 2008, “
Anatomically Realistic Three-Dimensional Meshes of the Pelvic Floor & Anal Canal for Finite Element Analysis
,”
Ann. Biomed. Eng.
0090-6964,
36
(
6
), pp.
1060
1071
.
31.
Ruan
,
J.
,
El-Jawahri
,
R.
,
Chai
,
L.
,
Barbat
,
S.
, and
Prasad
,
P.
, 2003, “
Prediction and Analysis of Human Thoracic Impact Responses and Injuries in Cadaver Impacts Using a Full Human Body Finite Element Model
,”
Stapp Car Crash J.
,
47
(
Oct
), pp.
299
321
. 1532-8546
32.
Wu
,
L.
, 2007, “
Nonlinear Finite Element Analysis for Musculoskeletal Biomechanics of Medial and Lateral Plantar Longitudinal Arch of Virtual Chinese Human After Plantar Ligamentous Structure Failures
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
2
), pp.
221
229
.
33.
Söderkvist
,
I.
, and
Wedin
,
P. A.
, 1993, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
0021-9290,
26
(
12
), pp.
1473
1477
.
34.
Erdemir
,
A.
,
Viveiros
,
M. L.
,
Ulbrecht
,
J. S.
, and
Cavanagh
,
P. R.
, 2006, “
An Inverse Finite-Element Model of Heel-Pad Indentation
,”
J. Biomech.
0021-9290,
39
(
7
), pp.
1279
1286
.
35.
Halloran
,
J. P.
,
Erdemir
,
A.
, and
van den Bogert
,
A. J.
, 2009, “
Adaptive Surrogate Modeling for Efficient Coupling of Musculoskeletal Control and Tissue Deformation Models
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
1
), p.
011014
.
You do not currently have access to this content.