Although the importance of knowing the magnitude of residual stress (RS) and its functional significance are widely recognized, there is still disagreement and confusion regarding the nature of physical mechanisms giving rise to RS in tissues and organs. Here an attempt is made to examine the various mechanisms which may be involved in producing RS, and to estimate their roles and significance based on previously published experimental observations. Two concepts are introduced. The first establishes a hierarchy of different possible RS producing mechanisms from the micro (local) level of the tissue space, through the meso-level of the whole tissue, to the macro (organ) one. Whereas micro-level RS seem to be present in all soft tissues, the existence of macro- and meso-level mechanisms are tissue and organ specific. The second concept introduced highlights the significance of tissue swelling as an RS producing mechanism in the local micro-level. The implications of RS mechanism hierarchy are discussed regarding the interpretations of commonly used experimental methods aimed to study RS or to estimate its magnitude. Of the three categories of RS mechanisms, the local micro-RS is the least understood. It is analyzed here in terms of the tissue’s multiconstituent structure, in the framework of mixture theory. It is shown that the micro-RS can stem either from interactions between the solid tissue constituents or between its solids and its fluidlike matrix. The latter mode is associated with osmotic-driven tissue swelling. The feasibility of these two mechanisms is analyzed based on published observations and measured data. The analysis suggests that under conditions not too remote from the in vivo homeostatic one, osmotic-driven tissue swelling is a predominant RS producing mechanism. The analysis also suggests that a true stress-free configuration can be obtained only if all RS producing mechanisms are relieved, and outlines a manner by which this may be achieved.

1.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1986, “
On Residual Stresses in Arteries
,”
ASME J. Biomech. Eng.
,
108
, pp.
189
192
. 0148-0731
2.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1992, “
Strain Distribution in Small Blood Vessels With Zero-Stress State Taken Into Consideration
,”
Am. J. Physiol.
,
262
, pp.
H544
552
. 0002-9513
3.
Omens
,
J. H.
, and
Fung
,
Y. C.
, 1990, “
Residual Strain in Rat Left Ventricle
,”
Circ. Res.
,
66
, pp.
37
45
. 0009-7330
4.
Lanir
,
Y.
,
Hayam
,
G.
,
Abovsky
,
M.
,
Zlotnick
,
A. Y.
,
Uretzky
,
G.
,
Nevo
,
E.
, and
Ben-Haim
,
S. A.
, 1996, “
Effect of Myocardial Swelling on Residual Strain in the Left Ventricle of the Rat
,”
Am. J. Physiol.
,
270
, pp.
H1736
1743
. 0002-9513
5.
Han
,
H. C.
, and
Fung
,
Y. C.
, 1991, “
Residual Strains in Porcine and Canine Trachea
,”
J. Biomech.
0021-9290,
24
, pp.
307
315
.
6.
Lanir
,
Y.
, 1987, “
Biorheology and Fluid Flux in Swelling Tissues. I. Bicomponent Theory for Small Deformations, Including Concentration Effects
,”
Biorheology
,
24
, pp.
173
187
. 0006-355X
7.
Fung
,
Y. C.
, 1991, “
What are the Residual Stresses Doing in Our Blood Vessels?
Ann. Biomed. Eng.
0090-6964,
19
, pp.
237
249
.
8.
Fung
,
Y. C.
, 1993,
Biomechanics—Mechanical Properties of Living Tissues
, 2nd ed.,
Springer-Verlag
,
New York
.
9.
Matsumoto
,
T.
,
Hayashi
,
K.
, and
Ide
,
K.
, 1995, “
Residual Strain and Local Strain Distributions in the Rabbit Atherosclerotic Aorta
,”
J. Biomech.
0021-9290,
28
, pp.
1207
1217
.
10.
Liu
,
S. Q.
, and
Fung
,
Y. C.
, 1992, “
Influence of STZ-Induced Diabetes on Zero-Stress States of Rat Pulmonary and Systemic Arteries
,”
Diabetes
0012-1797,
41
, pp.
136
146
.
11.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1991, “
Changes of Zero-Stress State of Rat Pulmonary Arteries in Hypoxic Hypertension
,”
J. Appl. Physiol.
8750-7587,
70
, pp.
2455
2470
.
12.
Lu
,
X.
,
Zhao
,
J. B.
,
Wang
,
G. R.
,
Gregersen
,
H.
, and
Kassab
,
G. S.
, 2001, “
Remodeling of the Zero-Stress State of Femoral Arteries in Response to Flow Overload
,”
Am. J. Physiol. Heart Circ. Physiol.
,
280
, pp.
H1547
1559
. 0363-6135
13.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Auer
,
M.
,
Regitnig
,
P.
, and
Ogden
,
R. W.
, 2007, “
Layer-Specific 3D Residual Deformations of Human Aortas With Non-Atherosclerotic Intimal Thickening
,”
Ann. Biomed. Eng.
0090-6964,
35
, pp.
530
545
.
14.
Lu
,
X.
,
Pandit
,
A.
, and
Kassab
,
G. S.
, 2004, “
Biaxial Incremental Homeostatic Elastic Moduli of Coronary Artery: Two-Layer Model
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
287
, pp.
H1663
1669
.
15.
Greenwald
,
S. E.
,
Moore
,
J. E.
, Jr.
,
Rachev
,
A.
,
Kane
,
T. P.
, and
Meister
,
J. J.
, 1997, “
Experimental Investigation of the Distribution of Residual Strains in the Artery Wall
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
438
444
.
16.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
, 1994, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
0021-9290,
27
, pp.
455
467
.
17.
Skalak
,
R.
,
Zargaryan
,
S.
,
Jain
,
R. K.
,
Netti
,
P. A.
, and
Hoger
,
A.
, 1996, “
Compatibility and the Genesis of Residual Stress by Volumetric Growth
,”
J. Math. Biol.
0303-6812,
34
, pp.
889
914
.
18.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
, 2002, “
A Constraint Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Meth. Appl. Sci.
0218-2025,
12
, pp.
407
430
.
19.
Taber
,
L. A.
, and
Humphrey
,
J. D.
, 2001, “
Stress-Modulated Growth, Residual Stress, and Vascular Heterogeneity
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
528
535
.
20.
Azeloglu
,
E. U.
,
Albro
,
M. B.
,
Thimmappa
,
V. A.
,
Ateshian
,
G. A.
, and
Costa
,
K. D.
, 2007, “
Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
,
294
, pp.
H1197
1205
. 0363-6135
21.
Vaishnav
,
R. N.
, and
Vossoughi
,
J.
, 1987, “
Residual Stress and Strain in Aortic Segments
,”
J. Biomech.
0021-9290,
20
, pp.
235
239
.
22.
Guo
,
X.
,
Lanir
,
Y.
, and
Kassab
,
G. S.
, 2007, “
Effect of Osmolarity on the Zero-Stress State and Mechanical Properties of Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
,
293
, pp.
H2328
2334
. 0363-6135
23.
Tregear
,
R. T.
, 1966,
Physical Functions of Skin
,
Academic
,
London
.
24.
Hult
,
A. M.
, and
Goltz
,
R. W.
, 1965, “
The Measurement of Elastin in Human Skin and Its Quantity in Relation to Age
,”
J. Invest. Dermatol.
,
44
, pp.
408
412
. 0022-202X
25.
Bottoms
,
E.
, and
Shuster
,
S.
, 1963, “
Effect of Ultra-Violet Light on Skin Collagen
,”
Nature (London)
,
199
, pp.
192
193
. 0028-0836
26.
Maroudas
,
A.
,
Bayliss
,
M. T.
, and
Venn
,
M. F.
, 1980, “
Further Studies on the Composition of Human Femoral Head Cartilage
,”
Ann. Rheum. Dis.
,
39
, pp.
514
523
. 0003-4967
27.
Maroudas
,
A. I.
, 1976, “
Balance Between Swelling Pressure and Collagen Tension in Normal and Degenerate Cartilage
,”
Nature (London)
0028-0836,
260
, pp.
808
809
.
28.
Katchalsky
,
A.
, and
Curran
,
P. F.
, 1965,
Nonequilibrium Thermodynamics in Biophysics
,
Harvard University Press
,
Cambridge, MA
.
29.
Parker
,
J. C.
, 1993, “
In Defense of Cell Volume?
Am. J. Physiol.
,
265
, pp.
C1191
1200
. 0002-9513
30.
Weiss
,
T. F.
, 1996,
Cellular Biophysics
, Vol.
1
,
MIT
,
Cambridge, MA
.
31.
Lillie
,
M. A.
, and
Gosline
,
J. M.
, 1996, “
Swelling and Viscoelastic Properties of Osmotically Stressed Elastin
,”
Biopolymers
,
39
, pp.
641
652
. 0006-3525
32.
Maroudas
,
A.
,
Wachtel
,
E.
,
Grushko
,
G.
,
Katz
,
E. P.
, and
Weinberg
,
P.
, 1991, “
The Effect of Osmotic and Mechanical Pressures on Water Partitioning in Articular Cartilage
,”
Biochim. Biophys. Acta
,
1073
, pp.
285
294
. 0006-3002
33.
Basser
,
P. J.
,
Schneiderman
,
R.
,
Bank
,
R. A.
,
Wachtel
,
E.
, and
Maroudas
,
A.
, 1998, “
Mechanical Properties of the Collagen Network in Human Articular Cartilage as Measured by Osmotic Stress Technique
,”
Arch. Biochem. Biophys.
0003-9861,
351
, pp.
207
219
.
34.
Urban
,
J. P.
, and
McMullin
,
J. F.
, 1985, “
Swelling Pressure of the Intervertebral Disc: Influence of Proteoglycan and Collagen Contents
,”
Biorheology
,
22
, pp.
145
157
. 0006-355X
35.
Sivan
,
S.
,
Merkher
,
Y.
,
Wachtel
,
E.
,
Ehrlich
,
S.
, and
Maroudas
,
A.
, 2006, “
Correlation of Swelling Pressure and Intrafibrillar Water in Young and Aged Human Intervertebral Discs
,”
J. Orthop. Res.
,
24
, pp.
1292
1298
. 0736-0266
36.
Erlich
,
S.
, “
The Influence of Age and Degeneration on Changes in the Osmotic Pressure of the Proteoglycans in the Intervertebral Disc
,” MS thesis, Technion–Israel Institute of Technology, Haifa.
37.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
, 1999, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine
0362-2436,
24
, pp.
755
762
.
38.
Nachemson
,
A.
, 1966, “
Mechanical Stresses on Lumbar Disks
,”
Curr. Pract. Orthop. Surg.
,
3
, pp.
208
224
. 0070-203X
You do not currently have access to this content.