Syringomyelia is a disease in which fluid-filled cavities, called syrinxes, form in the spinal cord causing progressive loss of sensory and motor functions. Invasive monitoring of pressure waves in the spinal subarachnoid space implicates a hydrodynamic origin. Poor treatment outcomes have led to myriad hypotheses for its pathogenesis, which unfortunately are often based on small numbers of patients due to the relative rarity of the disease. However, only recently have models begun to appear based on the principles of mechanics. One such model is the mathematically rigorous work of Carpenter and colleagues (2003, “Pressure Wave Propagation in Fluid-Filled Co-Axial Elastic Tubes Part 1: Basic Theory,” ASME J. Biomech. Eng., 125(6), pp. 852–856; 2003, “Pressure Wave Propagation in Fluid-Filled Co-Axial Elastic Tubes Part 2: Mechanisms for the Pathogenesis of Syringomyelia,” ASME J. Biomech. Eng., 125(6), pp. 857–863). They suggested that a pressure wave due to a cough or sneeze could form a shocklike elastic jump, which when incident at a stenosis, such as a hindbrain tonsil, would generate a transient region of high pressure within the spinal cord and lead to fluid accumulation. The salient physiological parameters of this model were reviewed from the literature and the assumptions and predictions re-evaluated from a mechanical standpoint. It was found that, while the spinal geometry does allow for elastic jumps to occur, their effects are likely to be weak and subsumed by the small amount of viscous damping present in the subarachnoid space. Furthermore, the polarity of the pressure differential set up by cough-type impulses opposes the tenets of the elastic-jump hypothesis. The analysis presented here does not support the elastic-jump hypothesis or any theory reliant on cough-based pressure impulses as a mechanism for the pathogenesis of syringomyelia.

1.
Berkouk
,
K.
,
Carpenter
,
P. W.
, and
Lucey
,
A. D.
, 2003, “
Pressure Wave Propagation in Fluid-Filled Co-Axial Elastic Tubes Part 1: Basic Theory
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
6
), pp.
852
856
.
2.
Carpenter
,
P.
,
Berkouk
,
K.
, and
Lucey
,
A.
, 2003, “
Pressure Wave Propagation in Fluid-Filled Co-Axial Elastic Tubes Part 2: Mechanisms for the Pathogenesis of Syringomyelia
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
6
), pp.
857
863
.
3.
Donaldson
,
H. H.
, and
Davis
,
D. J.
, 1903, “
A Description of Charts Showing the Areas of the Cross-Sections of the Human Spinal Cord at the Level of Each Spinal Nerve
,”
J. Comp. Neurol.
,
13
, pp.
19
40
. 0021-9967
4.
Elliott
,
H. C.
, 1945, “
Cross-Sectional Diameters and Areas of the Human Spinal Cord
,”
Anat. Rec.
,
93
(
3
), pp.
287
293
. 0003-276X
5.
Lockey
,
P.
,
Poots
,
G.
, and
Williams
,
B.
, 1975, “
Theoretical Aspects of the Attenuation of Pressure Pulses Within Cerebrospinal Fluid Pathways
,”
Med. Biol. Eng. Comput.
,
13
, pp.
861
869
. 0140-0118
6.
Thijssen
,
H. O. M.
,
Keyser
,
A.
,
Horstink
,
M. W. M.
, and
Meijer
,
E.
, 1979, “
Morphology of the Cervical Spinal Cord on Computed Myelography
,”
Neuroradiology
,
18
(
2
), pp.
57
62
. 0028-3940
7.
Yu
,
Y. L.
,
du Boulay
,
G. H.
,
Stevens
,
J. M.
, and
Kendall
,
B. E.
, 1985, “
Morphology and Measurements of the Cervical Spinal Cord in Computer-Assisted Tomography
,”
Neuroradiology
,
27
(
5
), pp.
399
402
. 0028-3940
8.
Fujiwara
,
K.
,
Yonenobu
,
K.
,
Hiroshima
,
K.
,
Ebara
,
S.
,
Yamashita
,
K.
, and
Ono
,
K.
, 1988, “
Morphometry of the Cervical Spinal Cord and Its Relation to Pathology in Cases With Compression Myelopathy
,”
Spine
,
13
(
11
), pp.
1212
1216
. 0362-2436
9.
Okada
,
Y.
,
Ikata
,
T.
,
Katoh
,
S.
, and
Yamada
,
H.
, 1994, “
Morphologic Analysis of the Cervical Spinal Cord, Dural Tube, and Spinal Canal by Magnetic Resonance Imaging in Normal Adults and Patients With Cervical Spondylotic Myelopathy
,”
Spine
,
19
(
20
), pp.
2331
2335
. 0362-2436
10.
Kameyama
,
T.
,
Hashizume
,
Y.
, and
Sobue
,
G.
, 1996, “
Morphologic Features of the Normal Human Cadaveric Spinal Cord
,”
Spine
,
21
(
11
), pp.
1285
1290
. 0362-2436
11.
Inoue
,
H.
,
Ohmori
,
K.
,
Takatsu
,
T.
,
Teramoto
,
T.
,
Ishida
,
Y.
, and
Suzuki
,
K.
, 1996, “
Morphological Analysis of the Cervical Spinal Canal, Dural Tube and Spinal Cord in Normal Individuals Using CT Myelography
,”
Neuroradiology
,
38
, pp.
148
151
. 0028-3940
12.
Ros
,
L.
,
Mota
,
J.
,
Guedea
,
A.
, and
Bidgood
,
D.
, 1998, “
Quantitative Measurements of the Spinal Cord and Canal by MR Imaging And Myelography
,”
Eur. Radiol.
,
8
, pp.
966
970
. 0938-7994
13.
Ko
,
H. -Y.
,
Park
,
J. H.
,
Shin
,
Y. B.
, and
Baek
,
S. Y.
, 2004, “
Gross Quantitative Measurements of Spinal Cord Segments in Human
,”
Spinal Cord
,
42
, pp.
35
40
. 1362-4393
15.
England
,
M. A.
, and
Wakeley
,
J. W.
, 2006,
Color Atlas of the Brain and Spinal Cord: An Introduction to Normal Neuroanatomy
,
Mosby
,
St. Louis
.
16.
Zaaroor
,
M.
,
Kósa
,
G.
,
Peri-Eran
,
A.
,
Maharil
,
I.
,
Shoham
,
M.
, and
Goldsher
,
D.
, 2006, “
Morphological Study of the Spinal Canal Content for Subarachnoid Endoscopy
,”
Minim Invasive Neurosurg.
,
49
(
4
), pp.
220
226
. 0946-7211
17.
Young
,
P. A.
,
Young
,
P. H.
, and
Tolbert
,
D. L.
, 2007,
Basic Clinical Neuroscience
, 2nd ed.,
Lippincott Williams & Wilkins
,
Philadelphia
.
18.
Bertram
,
C. D.
,
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
, 2005, “
The Origins of Syringomyelia: Numerical Models of Fluid/Structure Interactions in the Spinal Cord
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
7
), pp.
1099
1109
.
19.
Loth
,
F.
,
Yardimci
,
M. A.
, and
Alperin
,
N.
, 2001, “
Hydrodynamic Model of Cerebrospinal Fluid Motion Within the Spinal Cavity
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
71
79
.
20.
Bertram
,
C. D.
,
Bilston
,
L. E.
, and
Stoodley
,
M. A.
, 2008, “
Tensile Radial Stress in the Spinal Cord Related to Arachnoiditis or Tethering: A Numerical Model
,”
Med. Biol. Eng. Comput.
0140-0118,
46
, pp.
701
707
.
21.
Cirovic
,
S.
,
Walsh
,
C.
, and
Fraser
,
W. D.
, 2002, “
Wave Propagation in a System of Coaxial Tubes Filled With Incompressible Media: A Model of Pulse Transmission in the Intracranial Arteries
,”
J. Fluids Struct.
,
16
(
8
), pp.
1029
1049
. 0889-9746
22.
Kiernan
,
J. A.
, 1998,
Barr’s the Human Nervous System: An Anatomical Viewpoint
, 7th ed.,
Lippincott-Raven
,
Philadelphia
.
23.
Bloomfield
,
I. G.
,
Johnson
,
I. H.
, and
Bilston
,
L. E.
, 1998, “
Effects of Proteins, Blood Cells and Glucose on the Viscosity of Cerebrospinal Fluid
,”
Pediatr. Neurosurg.
,
28
(
5
), pp.
246
251
. 1016-2291
24.
Selçuki
,
M.
,
Vatansever
,
S.
,
Inan
,
S.
,
Erdemli
,
E.
,
Bağdatoğlu
,
C.
, and
Polat
,
A.
, 2003, “
Is a Filum Terminale With a Normal Appearance Really Normal?
,”
Childs Nerv. Syst.
,
19
, pp.
3
10
. 0256-7040
25.
Weller
,
R. O.
, 1999, “
Reaction of Intrathecal and Epidural Spaces to Infection and Inflammation
,”
Spinal Drug Delivery
,
T. L.
Yaksh
, ed.,
Elsevier
,
New York
, pp.
297
315
.
26.
Yamada
,
S.
,
Won
,
D. J.
,
Pezeshkpour
,
G.
,
Yamada
,
B. S.
,
Yamada
,
S. M.
,
Siddiqi
,
J.
,
Zouros
,
A.
, and
Colohan
,
A. R. T.
, 2007. “
Pathophysiology of Tethered Cord Syndrome and Similar Complex Disorders
,”
Neurosurg Focus
,
23
(
2
):E6, pp.
1
10
.
27.
Reina
,
M. A.
,
De León Casasola
,
O.
,
Villanueva
,
M. C.
,
López
,
A.
,
Machés
,
F.
, and
De Andrés
,
J. A.
, 2004, “
Ultrastructural Findings in Human Spinal Pia Mater in Relation to Subarachnoid Anesthesia
,”
Anesth. Analg. (Baltimore)
,
98
, pp.
1479
1485
. 0003-2999
28.
Ozawa
,
H.
,
Matsumoto
,
T.
,
Ohashi
,
T.
,
Sato
,
M.
, and
Kokuban
,
S.
, 2004, “
Mechanical Properties and Function of the Spinal Pia Mater
,”
J. Neurosurg.
,
1
, pp.
122
127
. 0003-2999
29.
Martin
,
B. A.
,
Kalata
,
W.
,
Loth
,
F.
, and
Royston
,
T. J.
, 2005, “
Syringomyelia Hydrodynamics: An In Vitro Study Based on In Vivo Measurements
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
7
), pp.
1110
1120
.
30.
Jackson
,
J. R.
, and
Williams
,
B.
, 1979, “
Errors in Velocity Measurement by the Pitot Principle in Fluids With Slowly Propagated Pressure Waves
,”
J. Biomed. Eng.
,
1
, pp.
50
54
. 0141-5425
31.
Greitz
,
D.
,
Ericson
,
K.
, and
Flodmark
,
O.
, 1999, “
Pathogenesis and Mechanics of Spinal Cord Cysts: A New Hypothesis Based on Magnetic Resonance Studies of Cerebrospinal Fluid Dynamics
,”
Int. J. Neuroradiol.
,
5
, pp.
61
78
.
32.
Bilston
,
L. E.
, and
Thibault
,
L. E.
, 1995, “
The Mechanical Properties of the Human Cervical Spinal Cord In Vitro
,”
Ann. Biomed. Eng.
,
24
(
s1
), pp.
67
74
. 0090-6964
33.
Mazuchowski
,
E. L.
, and
Thibault
,
L. E.
, 2003, “
Biomechanical Properties of the Human Spinal Cord and Pia Mater
,”
Proceedings of the Summer Bioengineering Conference
, Key Biscayne, FL, Jun. 25–29, pp.
1205
1206
.
34.
Runza
,
M.
,
Pietrabissa
,
R.
,
Mantero
,
S.
,
Albani
,
A.
,
Quaglini
,
V.
, and
Contro
,
R.
, 1999, “
Lumbar Dura Mater Biomechanics: Experimental Characterization and Scanning Electron Microscopy Observations
,”
Anesth. Analg. (Baltimore)
,
88
, pp.
1317
1321
. 0003-2999
35.
Tunturi
,
A. R.
, 1977, “
Elasticity of the Spinal Cord Dura in the Dog
,”
J. Neurosurg.
,
47
(
3
), pp.
391
396
. 0022-3085
36.
Reina
,
M. A.
,
Dittmann
,
M.
,
López Garcia
,
A.
, and
van Zundert
,
A.
, 1997, “
New Perspectives in the Microscopic Structure of Human Dura Mater in the Dorsolumbar Region
,”
Reg. Anesth.
,
22
(
2
), pp.
161
166
. 0146-521X
37.
McDonald
,
D. A.
, 1974,
Blood Flow in Arteries
,
Edward Arnold
,
London
, pp.
118
145
.
38.
Bilston
,
L. E.
,
Fletcher
,
D. F.
,
Brodbelt
,
A. R.
, and
Stoodley
,
M. A.
, 2003, “
Arterial Pulsation-Driven Cerebrospinal Fluid Flow in the Perivascular Space: A Computational Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
6
(
4
), pp.
235
241
. 1025-5842
39.
Bilston
,
L. E.
,
Fletcher
,
D. F.
, and
Stoodley
,
M. A.
, 2007, “
Effect of Phase Differences Between Cardiac and CSF Pulse on Perivascular Flow: A Computational Model With Relevance to Syringomyelia
,”
Proceedings of the International Symposium Syringomyelia 2007 Abstracts of Free Papers
,
Br. J. Neurosurg.
,
21
(
5
), pp.
430
. 0268-8697
You do not currently have access to this content.