A novel structure-based mathematical model of arterial remodeling in response to a sustained increase in pressure is proposed. The model includes two major aspects of remodeling in a healthy matured vessel. First, the deviation of the wall stress and flow-induced shear stress from their normal physiological values drives the changes in the arterial geometry. Second, the new mass that is produced during remodeling results from an increase in the mass of smooth muscle cells and collagen fibers. The model additionally accounts for the effect of the average pulsatile strain on the recruitment of collagen fibers in load bearing. The model was used to simulate remodeling of a human thoracic aorta, and the results are in good agreement with previously published model predictions and experimental data. The model predicts that the total arterial volume rapidly increases during the early stages of remodeling and remains virtually constant thereafter, despite the continuing stress-driven geometrical remodeling. Moreover, the effects of a perfect or incomplete restoration of the arterial compliance on the remodeling outputs were analyzed. For instance, the model predicts that the pattern of the time course of the opening angle depends on the extent to which the average pulsatile strain is restored at the end of the remodeling process. Future experimental studies on the time course of compliance, opening angle, and mass fractions of collagen, elastin, and smooth muscle cells can validate and improve the introduced hypotheses of the model.

1.
Fung
,
Y. C.
, 1990,
Biomechanics: Motion, Flow, Stress, and Growth
,
Springer-Verlag
,
New York
.
2.
Langille
,
B. L.
, 1995, “
Blood Flow-Induced Remodeling of the Artery Wall
,”
Flow-Dependent Regulation of Vascular Function
,
J. A.
Bevan
,
G.
Kaley
, and
G. M.
Rubanyi
, eds.,
Oxford University Press
,
New York
, pp.
277
299
.
3.
Taber
,
L. A.
, 1998, “
A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
3
), pp.
348
354
.
4.
Taber
,
L. A.
, and
Humphrey
,
J. D.
, 2001, “
Stress-Modulated Growth, Residual Stress, and Vascular Heterogeneity
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
6
), pp.
528
535
.
5.
Rachev
,
A.
,
Stergiopulos
,
N.
, and
Meister
,
J. J.
, 1996, “
Theoretical Study of Dynamics of Arterial Wall Remodeling in Response to Changes in Blood Pressure
,”
J. Biomech.
0021-9290,
29
(
5
), pp.
635
642
.
6.
Rachev
,
A.
,
Stergiopulos
,
N.
, and
Meister
,
J. J.
, 1998, “
A Model for Geometric and Mechanical Adaptation of Arteries to Sustained Hypertension
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
1
), pp.
9
17
.
7.
Tsamis
,
A.
, and
Stergiopulos
,
N.
, 2007, “
Arterial Remodeling in Response to Hypertension Using a Constituent-Based Model
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
293
(
5
), pp.
H3130
H3139
.
8.
Zulliger
,
M. A.
, and
Stergiopulos
,
N.
, 2007, “
Structural Strain Energy Function Applied to the Ageing of the Human Aorta
,”
J. Biomech.
0021-9290,
40
(
14
), pp.
3061
3069
.
9.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
, 2004, “
A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover
,”
J. Vasc. Res.
1018-1172,
41
(
4
), pp.
352
363
.
10.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
, 2005, “
A 2D Constrained Mixture Model for Arterial Adaptations to Large Changes in Flow, Pressure and Axial Stretch
,”
Math. Med. Biol.
,
22
(
4
), pp.
347
369
. 1477-8599
11.
Alford
,
P. W.
,
Humphrey
,
J. D.
, and
Taber
,
L. A.
, 2008, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
(
4
), pp.
245
262
.
12.
Hu
,
J. J.
,
Fossum
,
T. W.
,
Miller
,
M. W.
,
Xu
,
H.
,
Liu
,
J. C.
, and
Humphrey
,
J. D.
, 2007, “
Biomechanics of the Porcine Basilar Artery in Hypertension
,”
Ann. Biomed. Eng.
0090-6964,
35
(
1
), pp.
19
29
.
13.
Hu
,
J. J.
,
Ambrus
,
A.
,
Fossum
,
T. W.
,
Miller
,
M. W.
,
Humphrey
,
J. D.
, and
Wilson
,
E.
, 2008, “
Time Courses of Growth and Remodeling of Porcine Aortic Media During Hypertension: A Quantitative Immunohistochemical Examination
,”
J. Histochem. Cytochem.
0022-1554,
56
(
4
), pp.
359
370
.
14.
Xu
,
C.
,
Zarins
,
C. K.
,
Pannaraj
,
P. S.
,
Bassiouny
,
H. S.
, and
Glagov
,
S.
, 2000, “
Hypercholesterolemia Superimposed by Experimental Hypertension Induces Differential Distribution of Collagen and Elastin
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
20
(
12
), pp.
2566
2572
.
15.
Walker-Caprioglio
,
H. M.
,
Trotter
,
J. A.
,
Little
,
S. A.
, and
McGuffee
,
L. J.
, 1992, “
Organization of Cells and Extracellular Matrix in Mesenteric Arteries of Spontaneously Hypertensive Rats
,”
Cell Tissue Res.
0302-766X,
269
(
1
), pp.
141
149
.
16.
Fung
,
Y. C.
, and
Liu
,
S. Q.
, 1989, “
Change of Residual Strains in Arteries Due to Hypertrophy Caused by Aortic Constriction
,”
Circ. Res.
0009-7330,
65
(
5
), pp.
1340
1349
.
17.
Vaishnav
,
R. N.
, and
Vossoughi
,
J.
, 1987, “
Residual Stress and Strain in Aortic Segments
,”
J. Biomech.
0021-9290,
20
(
3
), pp.
235
239
.
18.
Greenwald
,
S. E.
,
Moore
,
J. E.
, Jr.
,
Rachev
,
A.
,
Kane
,
T. P.
, and
Meister
,
J. J.
, 1997, “
Experimental Investigation of the Distribution of Residual Strains in the Artery Wall
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
4
), pp.
438
444
.
19.
Bergel
,
D. H.
, 1961, “
The Static Elastic Properties of the Arterial Wall
,”
J. Physiol. (London)
0022-3751,
156
(
3
), pp.
445
457
.
20.
VanDijk
,
A. M.
,
Wieringa
,
P. A.
,
van der Meer
,
M.
, and
Laird
,
J. D.
, 1984, “
Mechanics of Resting Isolated Single Vascular Smooth Muscle Cells From Bovine Coronary Artery
,”
Am. J. Physiol.
0002-9513,
246
(
3
), pp.
C277
C287
.
21.
Westerhof
,
N.
,
Stergiopulos
,
N.
, and
Noble
,
M. I. M.
, 2005,
Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education
,
Springer Science + Business Media, Inc.
,
New York
.
22.
Zarins
,
C. K.
,
Zatina
,
M. A.
,
Giddens
,
D. P.
,
Ku
,
D. N.
, and
Glagov
,
S.
, 1987, “
Shear Stress Regulation of Artery Lumen Diameter in Experimental Atherogenesis
,”
J. Vasc. Surg.
0741-5214,
5
(
3
), pp.
413
420
.
23.
Bunce
,
D. F. M.
, 1974,
Atlas of Arterial Histology
,
Warren H. Green
,
St. Louis, MO
.
24.
Fridez
,
P.
,
Makino
,
A.
,
Kakoi
,
D.
,
Miyazaki
,
H.
,
Meister
,
J. J.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2002, “
Adaptation of Conduit Artery Vascular Smooth Muscle Tone to Induced Hypertension
,”
Ann. Biomed. Eng.
0090-6964,
30
(
7
), pp.
905
916
.
25.
Wuyts
,
F. L.
, 1991, “
Structureel Fysisch Model Ter Quantifiering Van De Elasticiteitseigenschappen Van Bloedvaten
,” Ph.D. thesis, Universiteit Antwerpen, Antwerpen, Belgium.
26.
Liu
,
S. Q.
, and
Fung
,
Y. C.
, 1989, “
Relationship Between Hypertension, Hypertrophy, and Opening Angle of Zero-Stress State of Arteries Following Aortic Constriction
,”
ASME J. Biomech. Eng.
0148-0731,
111
(
4
), pp.
325
335
.
27.
Matsumoto
,
T.
, and
Hayashi
,
K.
, 1994, “
Mechanical and Dimensional Adaptation of Rat Aorta to Hypertension
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
3
), pp.
278
283
.
28.
Vaishnav
,
R. N.
,
Vossoughi
,
J.
,
Patel
,
D. J.
,
Cothran
,
L. N.
,
Coleman
,
B. R.
, and
Ison-Franklin
,
E. L.
, 1990, “
Effect of Hypertension on Elasticity and Geometry of Aortic Tissue From Dogs
,”
ASME J. Biomech. Eng.
0148-0731,
112
(
1
), pp.
70
74
.
29.
Fridez
,
P.
,
Rachev
,
A.
,
Meister
,
J. J.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2001, “
Model of Geometrical and Smooth Muscle Tone Adaptation of Carotid Artery Subject to Step Change in Pressure
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
280
(
6
), pp.
H2752
H2760
.
30.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
, 2006, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
1742-5689,
3
(
6
), pp.
15
35
.
You do not currently have access to this content.