A method for fitting parameters in a poroviscoelastic (PVE) model of articular cartilage in the mouse is presented. Indentation is performed using two different sized indenters and then these data are fitted using a PVE finite element program and parameter extraction algorithm. Data from a smaller indenter, a 15μm diameter flat-ended 60deg cone, is first used to fit the viscoelastic (VE) parameters, on the basis that for this tip size the gel diffusion time (approximate time constant of the poroelastic (PE) response) is of the order of 0.1s, so that the PE response is negligible. These parameters are then used to fit the data from a second 170μm diameter flat-ended 60deg cone for the PE parameters, using the VE parameters extracted from the data from the 15μm tip. Data from tests on five different mouse tibial plateaus are presented and fitted. Parameter variation studies for the larger indenter show that for this case the VE and PE time responses overlap in time, necessitating the use of both models.

1.
Xu
,
L.
,
Flahiff
,
C. M.
,
Waldman
,
B. A.
,
Wu
,
D.
,
Olsen
,
B. R.
,
Setton
,
L. A.
, and
Li
,
Y.
, 2003, “
Osteoarthritis-Like Changes and Decreased Mechanical Function of Articular Cartilage in the Joints of Mice With the Chondrodysplasia Gene (Cho)
,”
Arthritis Rheum.
0004-3591,
48
(
9
), pp.
2509
2518
.
2.
Palmer
,
E. I.
, and
Lotz
,
J. C.
, 2004, “
The Compressive Creep Properties of Normal and Degenerated Murine Intervertebral Discs
,”
J. Orthop. Res.
0736-0266,
22
(
1
), pp.
164
169
.
3.
Cao
,
L.
,
Youn
,
I.
,
Guilak
,
F.
, and
Setton
,
L. A.
, 2006, “
Compressive Properties of Mouse Articular Cartilage Determined in a Novel Micro-Indentation Test Method and Biphasic Finite Element Model
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
5
), pp.
766
771
.
4.
Zwerina
,
J.
,
Redlich
,
K.
,
Polzer
,
K.
,
Joosten
,
L.
,
Kroenke
,
G.
,
Distler
,
J.
,
Hess
,
A.
,
Pundt
,
N.
,
Pap
,
T.
,
Hoffmann
,
O.
,
Gasser
,
J.
,
Scheinecker
,
C.
,
Smolen
,
J. S.
,
van den Berg
,
W.
, and
Schett
,
G.
, 2007, “
TNF-Induced Structural Joint Damage is Mediated by IL-1
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
104
(
28
), pp.
11742
11747
.
5.
Mow
,
V. C.
,
Kuei
,
S. C.
, and
Lai
,
W. M.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression—Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
73
84
.
6.
Mak
,
A. F.
, 1986, “
The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
0148-0731,
108
(
2
), pp.
123
130
.
7.
Suh
,
J.-K. F.
, and
Bai
,
S.
, 1998, “
Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
195
201
.
8.
DiSilvestro
,
M. R.
,
Zhu
,
Q.
,
Wong
,
M.
,
Jurvelin
,
J. S.
, and
Suh
,
J.-K. F.
,
, 2001, “
Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: I—Simultaneous Prediction of Reaction Force and Lateral Displacement
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
2
), pp.
191
197
.
9.
Huang
,
C.-Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2001, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
410
417
.
10.
Mak
,
A. F.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1987, “
Biphasic Indentation of Articular Cartilage—I. Theoretical Analysis
,”
J. Biomech.
0021-9290,
20
(
7
), pp.
703
714
.
11.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
, 1998, “
Evaluation of the Finite Element Software ABAQUS for Biomechanical Modelling of Biphasic Tissues
,”
J. Biomech.
0021-9290,
31
(
2
), pp.
165
169
.
12.
Suh
,
J.-K. F.
,
, and
DiSilvestro
,
M. R.
, 1999, “
Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue
,”
ASME J. Appl. Mech.
0021-8936,
66
(
2
), pp.
528
535
.
13.
Namani
,
R.
, 2006, “
Inverse Finite Element Methods for Extracting Elastic-Poroviscoelastic Properties of Cartilage and Other Soft Tissues From Indentation
,” Ph.D. thesis, University of Miami, Coral Gables.
14.
Nelder
,
J. A.
, and
Mead
,
R.
, 1965, “
Simplex Method for Function Minimization
,”
Comput. J.
0010-4620,
7
(
4
), pp.
308
313
.
15.
DiSilvestro
,
M. R.
, and
Suh
,
J.-K. M.
,
, 2001, “
A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,”
J. Biomech.
0021-9290,
34
(
4
), pp.
519
525
.
16.
Hayes
,
W. C.
,
Keer
,
L. M.
,
Herrmann
,
G.
, and
Mockros
,
L. F.
, 1972, “
A Mathematical Analysis for Indentation Tests of Articular Cartilage
,”
J. Biomech.
0021-9290,
5
(
5
), pp.
541
551
.
17.
Simha
,
N. K.
,
Jin
,
H.
,
Hall
,
M. L.
,
Chiravarambath
,
S.
, and
Lewis
,
J. L.
, 2007, “
Effect of Indenter Size on Elastic Modulus of Cartilage Measured by Indentation
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
5
), pp.
767
775
.
You do not currently have access to this content.