Saccular aneurysm growth in a human middle cerebral artery is modeled. The aneurysm growth model was presented in a companion paper by Kroon and Holzapfel (“A Model for Saccular Cerebral Aneurysm Growth by Collagen Fibre Remodelling,” J. Theor. Biol., in press) and was assessed there for axisymmetric growth. The aneurysm growth model is now evaluated for a more realistic setting. The middle cerebral artery is modeled as a two-layered cylinder, where the layers correspond to the media and the adventitia. An instant loss of the media in a region of the artery wall initiates the growth of the saccular aneurysm. The aneurysm wall is assumed to be a development of the adventitia of the original healthy artery, and collagen is assumed to be the only load-bearing constituent in the adventitia and in the aneurysm wall. The collagen is organized in a number of distinct layers where fibers in a specific layer are perfectly aligned in a certain fiber direction. The production of new collagen is taken to depend on the stretching of the aneurysm wall, and the continuous remodeling of the collagen fibers is responsible for the aneurysm growth. The general behavior of the growth model is investigated and also the influence of the structural organization of the collagen fabric. The analysis underlines the fact that the material behavior of aneurysmal tissue cannot be expected to be isotropic. The model predictions agree well with clinical and experimental results, for example, in terms of aneurysm size and shape, wall stress levels, and wall thickness.

1.
Bradac
,
G. B.
,
Bergui
,
M.
,
Stura
,
G.
,
Fontanella
,
M.
,
Daniele
,
D.
,
Gozzoli
,
L.
,
Berardino
,
M.
, and
Ducati
,
A.
, 2007, “
Periprocedural Morbidity and Mortality by Endovascular Treatment of Cerebral Aneurysms With GDC: A Retrospective 12-Year Experience of a Single Center
,”
Neurosurg. Rev.
0344-5607,
30
, pp.
117
125
.
2.
Holt
,
P. J.
,
Poloniecki
,
J. D.
,
Gerrard
,
D.
,
Loftus
,
I. M.
, and
Thompson
,
M. M.
, 2007, “
Meta-Analysis and Systematic Review of the Relationship Between Volume and Outcome in Abdominal Aortic Aneurysm Surgery
,”
Br. J. Surg.
0007-1323,
94
, pp.
395
403
.
3.
Hashimoto
,
N.
,
Handa
,
H.
,
Nagata
,
I.
, and
Hazama
,
F.
, 1984, “
Animal Model of Cerebral Aneurysms: Pathology and Pathogenesis of Induced Cerebral Aneurysms in Rats
,”
Neurol. Res.
0160-6412,
6
, pp.
33
40
.
4.
Kim
,
C.
, and
Cervos-Navarro
,
J.
, 1991, “
Spontaneous Saccular Cerebral Aneurysm in a Rat
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
109
, pp.
63
65
.
5.
Austin
,
G.
,
Fisher
,
S.
,
Dickson
,
D.
,
Anderson
,
D.
, and
Richardson
,
S.
, 1993, “
The Significance of the Extracellular Matrix in Intracranial Aneurysms
,”
Ann. Clin. Lab. Sci.
0091-7370,
23
, pp.
97
105
.
6.
Steiger
,
H. J.
, 1990,
Pathophysiology of Development and Rupture of Cerebral Aneurysms
(
Acta Neurochirurgica Supplementum 48
),
Springer-Verlag
,
Wien
.
7.
Ostergaard
,
J. R.
, and
Oxlund
,
H.
, 1987, “
Collagen Type III Deficiency in Patients With Rupture of Intracranial Saccular Aneurysms
,”
J. Neurosurg.
0022-3085,
67
, pp.
690
696
.
8.
Canham
,
P. B.
,
Finlay
,
H. M.
,
Dixon
,
J. G.
, and
Ferguson
,
S. E.
, 1991, “
Layered Collagen Fabric of Cerebral Aneurysms Quantitatively Assessed by the Universal Stage and Polarized Light Microscopy
,”
Anat. Rec.
0003-276X,
231
, pp.
579
592
.
9.
Kondo
,
S.
,
Hashimoto
,
N.
,
Kikuchi
,
H.
,
Hazama
,
F.
,
Nagata
,
I.
,
Kataoka
,
H.
, and
Rosenblum
,
W. I.
, 1998, “
Apoptosis of Medial Smooth Muscle Cells in the Development of Saccular Cerebral Aneurysms in Rats
,”
Stroke
0039-2499,
29
, pp.
181
189
.
10.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
, 2002, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Meth. Appl. Sci.
0218-2025,
12
, pp.
407
430
.
11.
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
, 2006, “
A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
142
149
.
12.
Driessen
,
N. J. B.
,
Wilson
,
W.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
, 2004, “
A Computational Model for Collagen Fibre Remodelling in the Arterial Wall
,”
J. Theor. Biol.
0022-5193,
226
, pp.
53
64
.
13.
Watton
,
P. N.
,
Hill
,
N. A.
, and
Heil
,
M.
, 2004, “
A Mathematical Model for the Growth of the Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobio.
,
3
, pp.
98
113
.
14.
Kroon
,
M.
, and
Holzapfel
,
G. A.
, 2007, “
A Model for Saccular Cerebral Aneurysm Growth by Collagen Fibre Remodelling
,”
J. Theor. Biol.
0022-5193,
247
, pp.
775
787
.
15.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics. A Continuum Approach for Engineering
,
Wiley
,
Chichester
.
16.
Coulson
,
R. J.
,
Cipolla
,
M. J.
,
Vitullo
,
L.
, and
Chesler
,
N. C.
, 2004, “
Mechanical Properties of Rat Middle Cerebral Arteries With and Without Myogenic Tone
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
76
81
.
17.
Canham
,
P. B.
,
Korol
,
R. M.
,
Finlay
,
H. M.
,
Hammond
,
R. R.
,
Holdsworth
,
D. W.
,
Ferguson
,
G. G.
, and
Lucas
,
A. R.
, 2006, “
Collagen Organization and Biomechanics of the Arteries and Aneurysms of the Human Brain
,”
Mechanics of Biological Tissue
,
G. A.
Holzapfel
and
R. W.
Ogden
, eds.,
Springer-Verlag
,
Heidelberg
, pp.
307
322
.
18.
Canham
,
P. B.
,
Talman
,
E. A.
,
Finlay
,
H. M.
, and
Dixon
,
J. G.
, 1991, “
Medial Collagen Organization in Human Arteries of the Heart and Brain by Polarized Light Microscopy
,”
Connect. Tissue Res.
0300-8207,
26
, pp.
121
134
.
19.
Finlay
,
H. M.
,
McCullough
,
L.
, and
Canham
,
P. B.
, 1995, “
Three-Dimensional Collagen Organization of Human Brain Arteries at Different Transmural Pressures
,”
J. Vasc. Res.
1018-1172,
32
, pp.
301
312
.
20.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
, 2002, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
441
463
.
21.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
, 2004, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
657
665
.
22.
Monson
,
K. L.
,
Goldsmith
,
W.
,
Barbaro
,
N. M.
, and
Manley
,
G. T.
, 2005, “
Significance of Source and Size in the Mechanical Response of Human Cerebral Blood Vessels
,”
J. Biomech.
0021-9290,
38
, pp.
737
744
.
23.
Smith
,
J. F. H.
,
Canham
,
P. B.
, and
Starkey
,
J.
, 1981, “
Orientation of Collagen in the Tunica Adventitia of the Human Cerebral Artery Measured With Polarized Light and the Universal Stage
,”
J. Ultrastruct. Res.
0022-5320,
77
, pp.
133
145
.
24.
Canham
,
P. B.
,
Finlay
,
H. M.
,
Kiernan
,
J. A.
, and
Ferguson
,
G. G.
, 1999, “
Layered Structure of Saccular Aneurysms Assessed by Collagen Birefringence
,”
Neurol. Res.
0160-6412,
21
, pp.
618
626
.
25.
Chatziprodromou
,
I.
,
Tricoli
,
A.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2007, “
Haemodynamics and Wall Remodelling of a Growing Cerebral Aneurysm: A Computational Model
,”
J. Biomech.
0021-9290,
40
, pp.
412
426
.
26.
Schulze-Bauer
,
C. A. J.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
, 2002, “
Mechanics of the Human Femoral Adventitia Including High-Pressure Response
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
282
, pp.
H2427
H2440
.
27.
Schulze-Bauer
,
C. A. J.
,
Mörth
,
C.
, and
Holzapfel
,
G. A.
, 2003, “
Passive Biaxial Mechanical Response of Aged Human Iliac Arteries
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
395
406
.
28.
Monson
,
K. L.
,
Goldsmith
,
W.
,
Barbaro
,
N. M.
, and
Manley
,
G. T.
, 2003, “
Axial Mechanical Properties of Fresh Human Cerebral Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
288
294
.
29.
Taylor
,
R. L.
, 2005,
FEAP-A Finite Element Analysis Program, Version 7.5 User Manual
,
University of California at Berkeley
, Berkeley, CA.
30.
Humphrey
,
J. D.
, 1999, “
Remodeling of a Collagenous Tissue at Fixed Lengths
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
591
597
.
31.
Hassler
,
O.
, 1972, “
Scanning Electron Microscopy of Saccular Intracranial Aneurysms
,”
Am. J. Pathol.
0002-9440,
68
, pp.
511
519
.
32.
Canham
,
P. B.
,
Finlay
,
H. M.
, and
Tong
,
S. Y.
, 1996, “
Stereological Analysis of the Layered Collagen of Human Intracranial Aneurysms
,”
J. Microsc.
0022-2720,
183
, pp.
170
180
.
33.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer-Verlag
,
New York
.
34.
MacDonald
,
D. J.
,
Finlay
,
H. M.
, and
Canham
,
P. B.
, 2000, “
Directional Wall Strength in Saccular Brain Aneurysms From Polarized Light Microscopy
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
533
542
.
35.
Finlay
,
H. M.
,
Whittaker
,
P.
, and
Canham
,
P. B.
, 1998, “
Collagen Organization in the Branching Region of Human Brain Arteries
,”
Stroke
0039-2499,
29
, pp.
1595
1601
.
36.
Rowe
,
A. J.
,
Finlay
,
H. M.
, and
Canham
,
P. B.
, 2003, “
Collagen Biomechanics in Cerebral Arteries and Bifurcations Assessed by Polarizing Microscopy
,”
J. Vasc. Res.
1018-1172,
40
, pp.
406
415
.
37.
Walmsley
,
J. G.
,
Campling
,
M. R.
, and
Chertkow
,
H. M.
, 1983, “
Interrelationships Among Wall Structure, Smooth Muscle Orientation, and Contraction in Human Major Cerebral Arteries
,”
Stroke
0039-2499,
14
, pp.
781
790
.
38.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
You do not currently have access to this content.