Computational fluid dynamics (CFD) methods can be used to compute the velocity field in patient-specific vascular geometries for pulsatile physiological flow. Those simulations require geometric and hemodynamic boundary values. The purpose of this study is to demonstrate that CFD models constructed from patient-specific magnetic resonance (MR) angiography and velocimetry data predict flow fields that are in good agreement with in vivo measurements and therefore can provide valuable information for clinicians. The effect of the inlet flow rate conditions on calculated velocity fields was investigated. We assessed the internal consistency of our approach by comparing CFD predictions of the in-plane velocity field to the corresponding in vivo MR velocimetry measurements. Patient-specific surface models of four basilar artery aneurysms were constructed from contrast-enhanced MR angiography data. CFD simulations were carried out in those models using patient-specific flow conditions extracted from MR velocity measurements of flow in the inlet vessels. The simulation results computed for slices through the vasculature of interest were compared with in-plane velocity measurements acquired with phase-contrast MR imaging in vivo. The sensitivity of the flow fields to inlet flow ratio variations was assessed by simulating five different inlet flow scenarios for each of the basilar aneurysm models. In the majority of cases, altering the inlet flow ratio caused major changes in the flow fields predicted in the aneurysm. A good agreement was found between the flow fields measured in vivo using the in-plane MR velocimetry technique and those predicted with CFD simulations. The study serves to demonstrate the consistency and reliability of both MR imaging and numerical modeling methods. The results demonstrate the clinical relevance of computational models and suggest that realistic patient-specific flow conditions are required for numerical simulations of the flow in aneurysmal blood vessels.

1.
Burleson
,
A.
,
Strother
,
C.
, and
Turitto
,
V.
, 1995, “
Computer Modeling of Intracranial Saccular and Lateral Aneurysms for the Study of Their Hemodynamics
,”
Neurosurgery
,
37
, pp.
774
784
. 0148-396X
2.
Foutrakis
,
G.
,
Yonas
,
H.
, and
Sclabassi
,
R.
, 1999, “
Saccular Aneurysm Formation in Curved and Bifurcating Arteries
,”
AJNR Am. J. Neuroradiol.
,
20
, pp.
1309
1317
. 0195-6108
3.
Strother
,
C.
,
Graves
,
V.
, and
Rappe
,
A.
, 1992, “
Aneurysm Hemodynamics: An Experimental Study
,”
AJNR Am. J. Neuroradiol.
,
13
, pp.
1089
1095
. 0195-6108
4.
Turner
,
C. L.
,
Tebbs
,
S.
,
Smielewski
,
P.
, and
Kirkpatrick
,
P. J.
, 2001, “
The Influence of Hemodynamic Stress Factors on Intracranial Aneurysm Formation
,”
J. Neurosurg.
,
95
, pp.
764
770
. 0022-3085
5.
Fahrig
,
R.
,
Nikolov
,
H.
,
Fox
,
A. J.
, and
Holdsworth
,
D. W.
, 1999, “
A Three-Dimensional Cerebrovascular Flow Phantom
,”
Med. Phys.
0094-2405,
26
, pp.
1589
1599
.
6.
Akkas
,
N.
, 1990, “
Aneurysms as a Biomechanical Instability Problem
,”
Biomechanical Transport Processes
,
F.
Mosora
, ed.,
Plenum
,
New York
, pp.
303
311
.
7.
Gonzalez
,
C.
,
Cho
,
Y.
,
Ortega
,
H.
, and
Moret
,
J.
, 1992, “
Intracranial Aneurysms: Flow Analysis of Their Origin and Progression
,”
AJNR Am. J. Neuroradiol.
,
13
, pp.
181
188
. 0195-6108
8.
Burleson
,
A. C.
, and
Turitto
,
V. T.
, 1996, “
Identification of Quantifiable Hemodynamic Factors in the Assessment of Cerebral Aneurysm Behavior: On Behalf of the Subcommittee on Biorheology of the Scientific and Standardization Committee of the ISTH
,”
Thromb. Haemostasis
,
76
, pp.
118
123
. 0340-6245
9.
Jou
,
L. D.
,
Quick
,
C. M.
,
Young
,
W. L.
,
Lawton
,
M. T.
,
Higashida
,
R.
,
Martin
,
A.
, and
Saloner
,
D.
, 2003, “
Computational Approach to Quantifying Hemodynamic Forces in Giant Cerebral Aneurysms
,”
AJNR Am. J. Neuroradiol.
0195-6108,
24
, pp.
1804
1810
.
10.
Steinman
,
D. A.
,
Milner
,
J. S.
,
Norley
,
C. J.
,
Lownie
,
S. P.
, and
Holdsworth
,
D. W.
, 2003, “
Image-Based Computational Simulation of Flow Dynamics in a Giant Intracranial Aneurysm
,”
AJNR Am. J. Neuroradiol.
0195-6108,
24
, pp.
559
566
.
11.
Imbesi
,
S. G.
, and
Kerber
,
C. W.
, 2001, “
Analysis of Slipstream Flow in a Wide-Necked Basilar Artery Aneurysm: Evaluation of Potential Treatment Regimes
,”
AJNR Am. J. Neuroradiol.
0195-6108,
22
, pp.
721
724
.
12.
Mantha
,
A.
,
Karmonik
,
C.
,
Benndorf
,
G.
,
Strother
,
C.
, and
Metcalfe
,
R.
, 2006, “
Hemodynamics in a Cerebral Artery Before and After the Formation of an Aneurysm
,”
AJNR Am. J. Neuroradiol.
,
27
, pp.
1113
1118
. 0195-6108
13.
Bale-Glickman
,
J.
,
Selby
,
K.
,
Saloner
,
D.
, and
Savas
,
O.
, 2003, “
Experimental Flow Studies in Exact-Replica Phantoms of Atherosclerotic Carotid Bifurcations Under Steady Input Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
38
48
.
14.
Berger
,
S. A.
, and
Rayz
,
V. L.
, 2003, “
Flow in the Stenotic Carotid Bifurcation
,”
Numerical Simulations of Incompressible Flows
,
M.
Hafez
, ed.,
World Scientific
,
Singapore
.
15.
Stroud
,
J. S.
,
Berger
,
S. A.
, and
Saloner
,
D.
, 2002, “
Numerical Analysis of Flow Through a Severely Stenotic Carotid Artery Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
9
20
.
16.
Long
,
Q.
,
Xu
,
X. Y.
,
Ariff
,
B.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Stanton
,
A. V.
, 2000, “
Reconstruction of Blood Flow Patterns in a Human Carotid Bifurcation: A Combined CFD and MRI Study
,”
J. Magn. Reson Imaging
,
11
, pp.
299
311
. 1053-1807
17.
Myers
,
J. G.
,
Moore
,
J. A.
,
Ojha
,
M.
,
Johnston
,
K. W.
, and
Ethier
,
C. R.
, 2001, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
109
120
.
18.
Steinman
,
D. A.
, 2002, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
483
497
.
19.
Liu
,
Y.
,
Lai
,
Y.
,
Nagaraj
,
A.
,
Kane
,
B.
,
Hamilton
,
A.
,
Greene
,
R.
,
McPherson
,
D. D.
, and
Chandran
,
K. B.
, 2001, “
Pulsatile Flow Simulation in Arterial Vascular Segments With Intravascular Ultrasound Images
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
583
595
.
20.
Jou
,
L. D.
,
Wong
,
G.
,
Disensa
,
B.
,
Lawton
,
M. T.
,
Higashida
,
R. T.
,
Young
,
W. L.
, and
Saloner
,
D.
, 2005, “
Correlation Between Lumenal Geometry Changes and Hemodynamics in Fusiform Intracranial Aneurysms
,”
AJNR Am. J. Neuroradiol.
,
26
, pp.
2357
2363
. 0195-6108
21.
Valencia
,
A.
,
Zarate
,
A.
,
Galvez
,
M.
, and
Badilla
,
L.
, 2006, “
Non-Newtonian Blood Flow Dynamics in a Right Internal Carotid Artery With a Saccular Aneurysm
,”
Int. J. Numer. Methods Fluids
0271-2091,
50
, pp.
751
764
.
22.
Hassan
,
T.
,
Ezura
,
M.
,
Timofeev
,
E. V.
,
Tominaga
,
T.
,
Saito
,
T.
,
Takahashi
,
A.
,
Takayama
,
K.
, and
Yoshimoto
,
T.
, 2004, “
Computational Simulation of Therapeutic Parent Artery Occlusion to Treat Giant Vertebrobasilar Aneurysm
,”
AJNR Am. J. Neuroradiol.
,
25
, pp.
63
68
. 0195-6108
23.
Cebral
,
J. R.
,
Castro
,
M. A.
,
Appanaboyina
,
S.
,
Putman
,
C. M.
,
Millan
,
D.
, and
Frangi
,
A. F.
, 2005, “
Efficient Pipeline for Image-Based Patient-Specific Analysis of Cerebral Aneurysm Hemodynamics: Technique and Sensitivity
,”
IEEE Trans. Med. Imaging
0278-0062,
24
, pp.
457
467
.
24.
Valencia
,
A.
,
Botto
,
S.
,
Sordo
,
J.
,
Galvez
,
M.
, and
Badilla
,
L.
, 2007, “
Comparison of Haemodynamics in Cerebral Aneurysms of Different Sizes Located in the Ophthalmic Artery
,”
Int. J. Numer. Methods Fluids
,
53
, pp.
793
809
. 0271-2091
25.
Tateshima
,
S.
,
Murayama
,
Y.
,
Villablanca
,
J. P.
,
Morino
,
T.
,
Takahashi
,
H.
,
Yamauchi
,
T.
,
Tanishita
,
K.
, and
Vinuela
,
F.
, 2001, “
Intraaneurysmal Flow Dynamics Study Featuring an Acrylic Aneurysm Model Manufactured Using a Computerized Tomography Angiogram as a Mold
,”
J. Neurosurg.
,
95
, pp.
1020
1027
. 0022-3085
26.
Long
,
Q.
,
Xu
,
X. Y.
,
Bourne
,
M.
, and
Griffith
,
T. M.
, 2000, “
Numerical Study of Blood Flow in an Anatomically Realistic Aorto-Iliac Bifurcation Generated from MRI Data
,”
Magn. Reson. Med.
0740-3194,
43
, pp.
565
576
.
27.
Long
,
Q.
,
Xu
,
X. Y.
,
Collins
,
M. W.
,
Griffith
,
T. M.
, and
Bourne
,
M.
, 1998, “
The Combination of Magnetic Resonance Angiography and Computational Fluid Dynamics: A Critical Review
,”
Crit. Rev. Biomed. Eng.
,
26
, pp.
227
274
. 0278-940X
28.
Taylor
,
C. A.
,
Draney
,
M. T.
,
Ku
,
J. P.
,
Parker
,
D.
,
Steele
,
B. N.
,
Wang
,
K.
, and
Zarins
,
C. K.
, 1999, “
Predictive Medicine: Computational Techniques in Therapeutic Decision-Making
,”
Comput. Aided Surg.
,
4
, pp.
231
247
. 1092-9088
29.
Wang
,
K. C.
,
Dutton
,
R. W.
, and
Taylor
,
C. A.
, 1999, “
Improving Geometric Model Construction for Blood Flow Modeling
,”
IEEE Eng. Med. Biol. Mag.
0739-5175,
18
, pp.
33
39
.
30.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
,
Ariff
,
B.
, and
Long
,
Q.
, 2000, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation
,”
J. Biomech.
0021-9290,
33
, pp.
975
984
.
31.
Pelc
,
N. J.
, 1995, “
Flow Quantification and Analysis Methods
,”
Magn. Reson Imaging Clin. N. Am.
,
3
, pp.
413
424
. 1064-9689
32.
Sommer
,
G.
,
Corrigan
,
G.
,
Fredrickson
,
J.
,
Sawyer-Glover
,
A.
,
Liao
,
J. R.
,
Myers
,
B.
, and
Pelc
,
N.
, 1998, “
Renal Blood Flow: Measurement In Vivo With Rapid Spiral MR Imaging
,”
Radiology
,
208
, pp.
729
734
. 0033-8419
33.
Markl
,
M.
,
Chan
,
F. P.
,
Alley
,
M. T.
,
Wedding
,
K. L.
,
Draney
,
M. T.
,
Elkins
,
C. J.
,
Parker
,
D. W.
,
Wicker
,
R.
,
Taylor
,
C. A.
,
Herfkens
,
R. J.
, and
Pelc
,
N. J.
, 2003, “
Time-Resolved Three-Dimensional Phase-Contrast MRI
,”
J. Magn. Reson Imaging
,
17
, pp.
499
506
. 1053-1807
34.
Markl
,
M.
,
Alley
,
M. T.
, and
Pelc
,
N. J.
, 2003, “
Balanced Phase-Contrast Steady-State Free Precession (PC-SSFP): A Novel Technique for Velocity Encoding by Gradient Inversion
,”
Magn. Reson. Med.
,
49
, pp.
945
952
. 0740-3194
35.
Milner
,
J. S.
,
Moore
,
J. A.
,
Rutt
,
B. K.
, and
Steinman
,
D. A.
, 1998, “
Hemodynamics of Human Carotid Artery Bifurcations: Computational Studies With Models Reconstructed From Magnetic Resonance Imaging of Normal Subjects
,”
J. Vasc. Surg.
,
28
, pp.
143
156
. 0741-5214
36.
Castro
,
M. A.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
, 2006, “
Computational Fluid Dynamics Modeling of Intracranial Aneurysms: Effects of Parent Artery Segmentation on Intra-Aneurysmal Hemodynamics
,”
AJNR Am. J. Neuroradiol.
,
27
, pp.
1703
1709
. 0195-6108
37.
Metcalfe
,
R. W.
, 2003, “
The Promise of Computational Fluid Dynamics as a Tool for Delineating Therapeutic Options in the Treatment of Aneurysms
,”
AJNR Am. J. Neuroradiol.
0195-6108,
24
, pp.
553
554
.
38.
Leibowitz
,
R.
,
Do
,
H. M.
,
Marcellus
,
M. L.
,
Chang
,
S. D.
,
Steinberg
,
G. K.
, and
Marks
,
M. P.
, 2003, “
Parent Vessel Occlusion for Vertebrobasilar Fusiform and Dissecting Aneurysms
,”
AJNR Am. J. Neuroradiol.
,
24
, pp.
902
907
. 0195-6108
39.
Cebral
,
J. R.
,
Yim
,
P. J.
,
Lohner
,
R.
,
Soto
,
O.
, and
Choyke
,
P. L.
, 2002, “
Blood Flow Modeling in Carotid Arteries With Computational Fluid Dynamics and MR Imaging
,”
Acad. Radiol.
,
9
, pp.
1286
1299
. 1076-6332
40.
Zhao
,
S. Z.
,
Papathanasopoulou
,
P.
,
Long
,
Q.
,
Marshall
,
I.
, and
Xu
,
X. Y.
, 2003, “
Comparative Study of Magnetic Resonance Imaging and Image-Based Computational Fluid Dynamics for Quantification of Pulsatile Flow in a Carotid Bifurcation Phantom
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
962
971
.
41.
Long
,
Q.
,
Xu
,
X. Y.
,
Kohler
,
U.
,
Robertson
,
M. B.
,
Marshall
,
I.
, and
Hoskins
,
P.
, 2002, “
Quantitative Comparison of CFD Predicted and MRI Measured Velocity Fields in a Carotid Bifurcation Phantom
,”
Biorheology
,
39
, pp.
467
474
. 0006-355X
42.
Leuprecht
,
A.
,
Perktold
,
K.
,
Kozerke
,
S.
, and
Boesiger
,
P.
, 2002, “
Combined CFD and MRI Study of Blood Flow in a Human Ascending Aorta Model
,”
Biorheology
,
39
, pp.
425
429
. 0006-355X
43.
Kohler
,
U.
,
Marshall
,
I.
,
Robertson
,
M. B.
,
Long
,
Q.
,
Xu
,
X. Y.
, and
Hoskins
,
P. R.
, 2001, “
MRI Measurement of Wall Shear Stress Vectors in Bifurcation Models and Comparison With CFD Predictions
,”
J. Magn. Reson Imaging
,
14
, pp.
563
573
. 1053-1807
44.
Hoi
,
Y.
,
Woodward
,
S. H.
,
Kim
,
M.
,
Taulbee
,
D. B.
, and
Meng
,
H.
, 2006, “
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
844
851
.
45.
Fluent Inc.
, 2005, “
Fluent 6.2 User’s Guide
.”
46.
Valencia
,
A. A.
,
Guzma’n
,
A. M.
,
Finol
,
E. A.
, and
Amon
,
C. H.
, 2006, “
Blood Flow Dynamics in Saccular Aneurysm Models of the Basilar Artery
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
516
526
.
47.
Berger
,
S. A.
, and
Jou
,
L.-D.
, 2000, “
Flows in Stenotic Vessels
,”
Annu. Rev. Fluid Mech.
0066-4189,
32
, pp.
347
384
.
48.
Torii
,
R.
,
Oshima
,
M.
,
Kobayashi
,
T.
,
Takagi
,
K.
, and
Tezduyar
,
T. E.
, 2007, “
Influence of Wall Elasticity in Patient-Specific Hemodynamic Simulations
,”
Comput. Fluids
,
36
, pp.
160
168
. 0045-7930
49.
Humphrey
,
J. D.
, and
Na
,
S.
, 2002, “
Elastodynamics and Arterial Wall Stress
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
509
523
.
You do not currently have access to this content.