The basic unit in microtubules is αβ-tubulin, a heterodimer consisting of an α- and a β-tubulin monomer. The mechanical characteristics of the dimer as well as of the individual monomers may be used to obtain new insight into the microtubule tensile properties. In the present work, we evaluate the elastic constants of each monomer and the interaction force between them by means of molecular dynamics simulations. Molecular models of α-, β-, and αβ-tubulins were developed starting from the 1TUB.pdb structure from the RCSB database. Simulations were carried out in a solvated environment by using explicit water molecules. In order to measure the monomers’ elastic constants, simulations were performed by mimicking experiments carried out with atomic force microscopy. A different approach was used to determine the interaction force between the α- and β-monomers by using 16 different monomer configurations based on different intermonomer distances. The obtained results show an elastic constant value for α-tubulin of 3.83.9Nm, while for the β-tubulin, the elastic constant was measured to be 3.33.6Nm. The maximum interaction force between the monomers was estimated to be 11.9nN. A mechanical model of the tubulin dimer was then constructed and, using the results from MD simulations, Young’s modulus was estimated to be 0.6GPa. A fine agreement with Young’s modulus values from literature (0.12.5GPa) is found, thus validating this approach for obtaining molecular scale mechanical characteristics. In perspective, these outcomes will allow exchanging atomic level description with key mechanical features enabling microtubule characterization by continuum mechanics approach.

1.
Howard
,
J.
, 2001,
Mechanics of Motor Proteins and the Cytoskeleton
,
Sinauer
,
Sunderland, MA
, Chap. 7, pp.
119
134
.
2.
Chrétien
,
D.
, and
Wade
,
R. H.
, 1991, “
New Data on the Microtubule Surface Lattice
,”
Biol. Cell
0248-4900,
71
(
1–2
), pp.
161
174
.
3.
Pampaloni
,
F.
,
Lattanzi
,
G.
,
Jonás
,
A.
,
Surrey
,
T.
,
Frey
,
E.
, and
Florin
,
E.-L.
, 2006, “
Thermal Fluctuations of Grafted Microtubules Provide Evidence of a Length-Dependent Persistence Length
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
27
), pp.
10248
10253
.
4.
Downing
,
K. H.
, and
Nogales
,
E.
, 1998, “
New Insights Into Microtubule Structure and Function From the Atomic Model of Tubulin
,”
Eur. Biophys. J.
0175-7571,
27
(
5
), pp.
431
436
.
5.
Nogales
,
E.
,
Wolf
,
S. G.
, and
Downing
,
K. H.
, 1998, “
Structure of αβ-Tubulin Dimer by Electron Crystallography
,”
Nature (London)
0028-0836,
391
(
6663
), pp.
199
203
.
6.
Nogales
,
E.
,
Whittaker
,
M.
,
Miligan
,
R. A.
, and
Downing
,
K. H.
, 1999, “
High-Resolution Model of the Microtubule
,”
Cell
0092-8674,
96
(
1
), pp.
79
88
.
7.
Downing
,
K. H.
, and
Nogales
,
E.
, 1998, “
Tubulin and Microtubule Structure
,”
Curr. Opin. Cell Biol.
0955-0674,
10
(
1
), pp.
16
22
.
8.
Downing
,
K. H.
, and
Nogales
,
E.
, 1998, “
Tubulin Structure: Insights Into Microtubules Properties and Functions
,”
Curr. Opin. Struct. Biol.
0959-440X,
8
(
6
), pp.
785
791
.
9.
Felgner
,
H.
,
Frank
,
R.
, and
Schliwa
,
M.
, 1996, “
Flexural Rigidity of Microtubules Measured With the Use of Optical Tweezers
,”
J. Cell. Sci.
0021-9533,
109
(
2
), pp.
509
516
.
10.
Venier
,
P.
,
Maggs
,
A. C.
,
Carlier
,
M.-F.
, and
Pantaloni
,
D.
, 1994, “
Analysis of Microtubule Rigidity Using Hydrodynamic Flow and Thermal Fluctuations
,”
J. Biol. Chem.
0021-9258,
269
(
18
), pp.
13353
13360
.
11.
Kis
,
A.
,
Kasas
,
S.
,
Babic
,
B.
,
Kulik
,
A. J.
,
Benoît
,
W.
,
Briggs
,
G. A. D.
,
Schönenberger
,
C.
,
Catsicas
,
S.
, and
Forró
,
L.
, 2002, “
Nanomechanics of Microtubules
,”
Phys. Rev. Lett.
0031-9007,
89
(
24
), p.
248101
.
12.
Gittes
,
F.
,
Mickey
,
B.
,
Nettleton
,
J.
, and
Howard
,
J.
, 1993, “
Flexural Rigidity of Microtubules and Actin Filaments Measured From Thermal Fluctuations in Shape
,”
J. Cell Biol.
0021-9525,
120
(
4
), pp.
923
934
.
13.
Wagner
,
O.
,
Zinke
,
J.
,
Dancker
,
P.
,
Grill
,
W.
, and
Bereiter-Hahn
,
J.
, 1999, “
Viscoelastic Properties of F-Actin, Microtubules, F-Actin∕α-Actinin, and F-Actin∕Hexokinase Determined in Microliter Volumes With a Novel Nondestructive Method
,”
Biophys. J.
0006-3495,
76
(
5
), pp.
2784
2796
.
14.
Kasas
,
S.
,
Kis
,
A.
,
Riederer
,
B. M.
,
Forró
,
L.
,
Dietler
,
G.
, and
Catsicas
,
S.
, 2004, “
Mechanical Properties of Microtubules Explored Using the Finite Element Method
,”
ChemPhysChem
1439-4235,
5
(
2
), pp.
252
257
.
15.
Berman
,
H. M.
,
Westbrook
,
J.
,
Feng
,
Z.
,
Gilliland
,
G.
,
Bhat
,
T. N.
,
Weissig
,
H.
,
Shindyalov
,
I. N.
, and
Bourne
,
P. E.
, 2000, “
The Protein Data Bank
,”
Nucleic Acids Res.
0305-1048,
28
(
1
), pp.
235
242
, see also www.rcsb.orgwww.rcsb.org.
16.
Löwe
,
J.
,
Li
,
H.
,
Downing
,
K. H.
, and
Nogales
,
E.
, 2001, “
Refined Structure of αβ-Tubulin at 3.5Å Resolution
,”
J. Mol. Biol.
0022-2836,
313
(
5
), pp.
1045
1057
.
17.
Lindahl
,
E.
,
Hess
,
B.
, and
van der Spoel
,
D.
, 2001, “
GROMACS 3.0: A Package for Molecular Simulation and Trajectory Analysis
,”
J. Mol. Model.
0948-5023,
7
(
8
), pp.
306
317
.
18.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
van Gunsteren
,
W. F.
, and
Hermans
,
J.
, 1981,
Interaction Model for Water in Relation to Protein Hydration
,
Reidel
,
Dordrecht
, pp.
331
342
.
19.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
DiNola
,
A.
, and
Haak
,
J. R.
, 1984, “
Molecular Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
0021-9606,
81
(
8
), pp.
3684
3690
.
20.
Park
,
S.
,
Khalili-Araghi
,
F.
,
Tajkhorshid
,
E.
, and
Schulten
,
K.
, 2003, “
Free Energy Calculation From Steered Molecular Dynamics Simulations Using Jarzynski’s Equality
,”
J. Chem. Phys.
0021-9606,
119
(
6
), pp.
3559
3566
.
21.
Altmann
,
S. M.
,
Grünberg
,
R. G.
,
Lenne
,
P. F.
,
Ylänne
,
J.
,
Raae
,
A. J.
,
Herbert
,
K.
,
Saraste
,
M.
,
Nilges
,
M.
, and
Hörber
,
J. K. H.
, 2002, “
Pathways and Intermediates in Forced Unfolding of Spectrin Repeats
,”
Structure (London)
0969-2126,
10
(
8
), pp.
1085
1096
.
22.
Soncini
,
M.
,
Vesentini
,
S.
,
Ruffoni
,
D.
,
Orsi
,
M.
,
Deriu
,
M. A.
, and
Redaelli
,
A.
, 2007, “
Mechanical Response and Conformational Changes of Alpha-Actinin Domains During Unfolding: A Molecular Dynamics Study
,”
Biomechanics and Modeling in Mechanobiology
,
6
(
6
), pp.
399
407
.
23.
Lorenzo
,
A. C.
, and
Caffarena
,
E. R.
, 2005, “
Elastic Properties, Young’s Modulus Determination and Structural Stability of the Tropocollagen Molecule: A Computational Study by Steered Molecular Dynamics
,”
J. Biomech.
0021-9290,
38
(
7
), pp.
1527
1533
.
24.
Peters
,
G.
,
Frimurer
,
T. M.
,
Andersen
,
J. N.
, and
Olsen
,
O. H.
, 2000, “
Molecular Dynamics Simulations of Protein-Tyrosine Phosphatase 1B. II. Substrate-Enzyme Interactions and Dynamics
,”
Biophys. J.
0006-3495,
78
(
5
), pp.
2191
2200
.
25.
Lin
,
S.
,
Chen
,
J.-L.
,
Huang
,
L.-S.
, and
Lin
,
H.-W.
, 2005, “
Measurements of the Forces in Protein Interactions With Atomic Force Microscopy
,”
Current Proteomics
,
2
(
1
), pp.
55
81
.
26.
VanBuren
,
V.
,
Cassimeris
,
L.
, and
Odde
,
D. J.
, 2005, “
Mechanochemical Model of Microtubule Structure and Self-Assembly Kinetics
,”
Biophys. J.
0006-3495,
89
(
5
), pp.
2911
2926
.
You do not currently have access to this content.