Articular cartilage is a biological weight-bearing tissue covering the bony ends of articulating joints. Negatively charged proteoglycan (PG) in articular cartilage is one of the main factors that govern its compressive mechanical behavior and swelling phenomenon. PG is nonuniformly distributed throughout the depth direction, and its amount or distribution may change in the degenerated articular cartilage such as osteoarthritis. In this paper, we used a 50MHz ultrasound system to study the depth-dependent strain of articular cartilage under the osmotic loading induced by the decrease of the bathing saline concentration. The swelling-induced strains under the osmotic loading were used to determine the layered material properties of articular cartilage based on a triphasic model of the free-swelling. Fourteen cylindrical cartilage-bone samples prepared from fresh normal bovine patellae were tested in situ in this study. A layered triphasic model was proposed to describe the depth distribution of the swelling strain for the cartilage and to determine its aggregate modulus Ha at two different layers, within which Ha was assumed to be linearly dependent on the depth. The results showed that Ha was 3.0±3.2, 7.0±7.4, 24.5±11.1MPa at the cartilage surface, layer interface, and deep region, respectively. They are significantly different (p<0.01). The layer interface located at 70%±20% of the overall thickness from the uncalcified-calcified cartilage interface. Parametric analysis demonstrated that the depth-dependent distribution of the water fraction had a significant effect on the modeling results but not the fixed charge density. This study showed that high-frequency ultrasound measurement together with triphasic modeling is practical for quantifying the layered mechanical properties of articular cartilage nondestructively and has the potential for providing useful information for the detection of the early signs of osteoarthritis.

1.
Mow
,
V. C.
,
Ratcliffe
,
A.
, and
Poole
,
A. R.
, 1992, “
Cartilage and Diarthrodial Joints as Paradigms for Hierarchical Materials and Structures
,”
Biomaterials
0142-9612,
13
, pp.
67
97
.
2.
Brandt
,
K.
,
Doherty
,
M.
, and
Lohmander
,
S.
, 1998,
Osteoarthritis Cartilage
,
Oxford University Press
.
3.
Kempson
,
G. E.
, 1980,
The Joints and Synovial Fluid
,
Academic
,
New York
, Vol.
II
, pp.
177
238
.
4.
Mow
,
V. C.
,
Zhu
,
W.
, and
Ratcliffe
,
A.
, 1991, “
Structure and Function of Articular Cartilage and Meniscus
,” in
Basic Othopaedic Biomechanics
,
V. C.
Mow
and
W. C.
Hayes
, eds.,
Raven
,
NY
, pp.
143
198
.
5.
Maroudas
,
A.
, 1976, “
Balance Between Swelling Pressure and Collagen Tension in Normal and Degenerate Cartilage
,”
Nature (London)
0028-0836,
260
, pp.
808
809
.
6.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
113
, pp.
245
258
.
7.
Maroudas
,
A.
, 1976, “
Transport of Solutes Through Cartilage—Permeability to Large Molecules
,”
J. Anat.
0021-8782,
122
, pp.
335
347
.
8.
Narmoneva
,
D. A.
,
Wang
,
J. Y.
, and
Setton
,
L. A.
, 1999, “
Nonuniform Swelling-Induced Residual Strains in Articular Cartilage
,”
J. Biomech.
0021-9290,
32
, pp.
401
408
.
9.
Grodzinsky
,
A. J.
,
Roth
,
V.
,
Myers
,
E.
,
Grossman
,
W. D.
, and
Mow
,
V. C.
, 1981, “
The Significance of Electromechanical and Osmotic Forces in the Nonequilibrium Swelling Behavior of AC in Tension
,”
ASME J. Biomech. Eng.
0148-0731,
103
, pp.
221
231
.
10.
Guilak
,
F.
,
Ratcliffe
,
A.
,
Lane
,
N.
,
Rosenwasser
,
M. P.
, and
Mow
,
V. C.
, 1994, “
Mechanical and Biochemical Changes in the Superficial Zone of Articular Cartilage in Canine Experimental Osteoarthritis
,”
J. Orthop. Res.
0736-0266,
12
, pp.
474
484
.
11.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
, 1985, “
Swelling of Articular Cartilage and Other Connective Tissues: Electromechanochemical Forces
,”
J. Orthop. Res.
0736-0266,
3
, pp.
148
159
.
12.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
, 1987, “
The Kinetics of Chemically Induced Nonequilibrium Swelling of Articular Cartilage and Corneal Stroma
,”
ASME J. Biomech. Eng.
0148-0731,
109
, pp.
79
89
.
13.
Chahine
,
N. O.
,
Wang
,
C. C.-B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2004, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
0021-9290,
37
, pp.
1251
1261
.
14.
Flahiff
,
C. M.
,
Narmoneva
,
D. A.
,
Huebner
,
J. L.
,
Kraus
,
V. B.
,
Guilak
,
F.
, and
Setton
,
L. A.
, 2002, “
Osmotic Loading to Determine the Intrinsic Material Properties of Guinea Pig Knee Cartilage
J. Biomech.
0021-9290,
35
, pp.
1285
1290
.
15.
Flahiff
,
C. M.
,
Kraus
,
V. B.
,
Huebner
,
J. L.
, and
Setton
,
L. A.
, 2004, “
Cartilage Mechanics in the Guinea Pig Model of Osteoarthritis Studied With an Osmotic Loading Method
,”
Osteoarthritis Cartilage
1063-4584,
12
, pp.
383
388
.
16.
Narmoneva
,
D. A.
,
Wang
,
J. Y.
, and
Setton
,
L. A.
, 2001, “
A Noncontacting Method for Material Property Determination for Articular Cartilage From Osmotic Loading
,”
Biophys. J.
0006-3495,
81
, pp.
3066
3076
.
17.
Narmoneva
,
D. A.
,
Cheung
,
H. S.
,
Wang
,
J. Y.
,
Howell
,
D. S.
, and
Setton
,
L. A.
, 2002, “
Altered Swelling Behavior of Femoral Cartilage Following Joint Immobilization in a Canine Model
,”
J. Orthop. Res.
0736-0266,
20
, pp.
83
91
.
18.
Setton
,
L. A.
,
Tohyama
,
H.
, and
Mow
,
V. C.
, 1998, “
Swelling and Curling Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
355
361
.
19.
Lefebvre
,
F.
,
Graillat
,
N.
,
Chérin
,
E.
,
Berger
,
G.
, and
Saïed
,
A.
, 1998, “
Automatic Three Dimensional Reconstruction and Characterization of Articular Cartilage From High Resolution Ultrasound Acquisition
,”
Ultrasound Med. Biol.
0301-5629,
24
, pp.
1369
1381
.
20.
Modest
,
V. E.
,
Murphy
,
M. C.
, and
Mann
,
R. W.
, 1989, “
Optical Verification of a Technique for in situ Ultrasonic Measurement of Articular Cartilage Thickness
,”
J. Biomech.
0021-9290,
22
, pp.
171
176
.
21.
Saied
,
A.
,
Cherin
,
E.
,
Gaucher
,
H.
,
Laugier
,
P.
,
Gillet
,
P.
,
Floquet
,
J.
,
Netter
,
P.
, and
Berger
,
G.
, 1997, “
Assessment of Articular Cartilage and Subchondral Bone: Subtle and Progressive Changes in Experimental Osteoarthritis Using 50MHz Echography in vitro
,”
J. Bone Miner. Res.
0884-0431,
12
, pp.
1378
1386
.
22.
Agemura
,
D. H.
,
O’Brien
,
W. D.
,
Olerud
,
J. E.
,
Chun
,
L. E.
, and
Eyre
,
D. E.
, 1990, “
Ultrasonic Propagation Properties of Articular Cartilage at 100MHz
,”
J. Acoust. Soc. Am.
0001-4966,
87
, pp.
1786
1791
.
23.
Cherin
,
E.
,
Saied
,
A.
,
Laugier
,
P.
,
Netter
,
P.
, and
Berger
,
G.
, 1998, “
Evaluation of Acoustical Parameter Sensitivity to Age-Related and Osteoarthritic Changes in Articular Cartilage Using 50MHz Ultrasound
,”
Ultrasound Med. Biol.
0301-5629,
24
, pp.
341
354
.
24.
Joiner
,
G. A.
,
Bogoch
,
E. R.
,
Pritzker
,
K. P.
,
Buschmann
,
M. D.
,
Chevrier
,
A.
, and
Foster
,
F. S.
, 2001, “
High Frequency Acoustic Parameters of Human and Bovine Articular Cartilage Following Experimentally-Induced Matrix Degradation
,”
Ultrason. Imaging
0161-7346,
23
, pp.
106
116
.
25.
Myers
,
S. L.
,
Dines
,
K.
,
Brandt
,
D. A.
,
Brandt
,
K. D.
, and
Alvrecht
,
M. E.
, 1995, “
Experimental Assessment by High Frequency Ultrasound of Articular Cartilage Thickness and Osteoarthritic Changes
,”
J. Rheumatol.
0315-162X,
22
, pp.
109
116
.
26.
Patil
,
S. G.
,
Zheng
,
Y. P.
,
Wu
,
J. Y.
, and
Shi
,
J.
, 2004, “
Measurement of Depth-Dependency and Anisotropy of Ultrasound Speed of Bovine Articular Cartilage in vitro
,”
Ultrasound Med. Biol.
0301-5629,
30
, pp.
953
963
.
27.
Toyras
,
J.
,
Lyyra-Laitinen
,
T.
,
Niinimaki
,
M.
,
Lindgren
,
R.
,
Nieminen
,
M. T.
,
Kiviranta
,
I.
, and
Jurvelin
,
J. S.
, 2001, “
Estimation of the Young’s Modulus of Articular Cartilage Using an Arthroscopic Indentation Instrument and Ultrasonic Measurement of Tissue Thickness
,”
J. Biomech.
0021-9290,
34
(
2
), pp.
251
256
.
28.
Nieminen
,
H. J.
,
Toyras
,
J.
,
Rieppo
,
J.
,
Nieminen
,
M. T.
,
Hirvonen
,
J.
,
Korhonen
,
R.
, and
Jurvelin
,
J. S.
, 2002, “
Real-Time Ultrasound Analysis of Articular Cartilage Degradation in vitro
,”
Ultrasound Med. Biol.
0301-5629,
28
(
4
), pp.
519
525
.
29.
Nieminen
,
H. J.
,
Saarakkala
,
S.
,
Laasanen
,
M. S.
,
Rieppo
,
J.
,
Hirvonen
,
J.
,
Jurvelin
,
J. S.
, and
Toyras
,
J.
, 2004, “
Ultrasound Attenuation in Normal and Spontaneously Degenerated Articular Cartilage
,”
Ultrasound Med. Biol.
0301-5629,
30
(
4
), pp.
493
500
.
30.
Senzig
,
D. A.
,
Forster
,
F. K.
, and
Olerud
,
J. E.
, 1992, “
Ultrasonic Attenuation in Articular Cartilage
,”
J. Acoust. Soc. Am.
0001-4966,
92
, pp.
676
681
.
31.
Toyras
,
J.
,
Nieminen
,
H. J.
,
Laasanen
,
M. S.
,
Nieminen
,
M. T.
,
Korhonen
,
R. K.
,
Rieppo
,
J.
,
Hirvonen
,
J.
,
Helminen
,
H. J.
, and
Jurvelin
,
J. S.
, 2002, “
Ultrasonic Characterization of Articular Cartilage
,”
Biorheology
0006-355X,
39
(
1–2
), pp.
161
169
.
32.
Laasanen
,
M. S.
,
Saarakkala
,
S.
,
Toyras
,
J.
,
Hirvonen
,
J.
,
Rieppo
,
J.
,
Korhonen
,
R. K.
, and
Jurvelin
,
J. S.
, 2003, “
Ultrasound Indentation of Bovine Knee Articular Cartilage in situ
,”
J. Biomech.
0021-9290,
36
, pp.
1259
1267
.
33.
Pellaumail
,
B.
,
Watrin
,
A.
,
Loeuille
,
D.
,
Netter
,
P.
,
Berger
,
G.
,
Laugier
,
P.
, and
Saied
,
A.
, 2002, “
Effect of Articular Cartilage Proteoglycan Depletion on High Frequency Ultrasound Backscatter
,”
Osteoarthritis Cartilage
1063-4584,
10
, pp.
535
541
.
34.
Saarakkala
,
S.
,
Toyras
,
J.
,
Hirvonen
,
J.
,
Laasanen
,
M. S.
,
Lappalainen
,
R.
, and
Jurvelin
,
J. S.
, 2004, “
Ultrasonic Quantitation of Superficial Degradation of Articular Cartilage
,”
Ultrasound Med. Biol.
0301-5629,
30
(
6
), pp.
783
792
.
35.
Kim
,
H. K. W.
,
Babyn
,
P. S.
,
Harasiewicz
,
K. A.
,
Gahunia
,
H. K.
,
Pritzker
,
F. P. H.
, and
Foster
,
F. S.
, 1995, “
Imaging of Immature Articular Cartilage Using Ultrasound Backscatter Microscopy at 50MHz
,”
J. Orthop. Res.
0736-0266,
13
, pp.
963
970
.
36.
Suh
,
J. K. F.
,
Youn
,
I.
, and
Fu
,
F. H.
, 2001, “
An in situ Calibration of an Ultrasound Transducer: A Potential Application for an Ultrasonic Indentation Test of Articular Cartilage
,”
J. Biomech.
0021-9290,
34
, pp.
1347
1353
.
37.
Zheng
,
Y. P.
, and
Mak
,
A. F. T.
, 1996, “
An Ultrasound Indentation System for Biomechanical Properties Assessment of Soft Tissues in vivo
,”
IEEE Trans. Biomed. Eng.
0018-9294,
43
, pp.
912
918
.
38.
Zheng
,
Y. P.
, and
Mak
,
A. F. T.
, 1999, “
Effective Elastic Properties for Lower Limb Soft Tissues From Manual Indentation Experiment
IEEE Trans. Rehabil. Eng.
1063-6528,
7
, pp.
257
267
.
39.
Zheng
,
Y. P.
,
Ding
,
C. X.
,
Bai
,
J.
,
Mak
,
A. F. T.
, and
Qin
,
L.
, 2001, “
Measurement of the Layered Compressive Properties of Trypsin-Treated Articular Cartilage: An Ultrasound Investigation
,”
Med. Biol. Eng. Comput.
0140-0118,
39
, pp.
534
541
.
40.
Zheng
,
Y. P.
,
Mak
,
A. F. T.
,
Lau
,
K. P.
, and
Qin
,
L.
, 2002, “
An Ultrasonic Measurement for in vitro Depth-Dependent Equilibrium Strains of Articular Cartilage in Compression
,”
Phys. Med. Biol.
0031-9155,
47
(
17
), pp.
3165
3180
.
41.
Zheng
,
Y. P.
,
Bridal
,
S. L.
,
Shi
,
J.
,
Saied
,
A.
,
Lu
,
M. H.
,
Jaffre
,
B.
,
Mak
,
A. F. T.
, and
Laugier
,
P.
, 2004, “
High Resolution Ultrasound Elastomicroscopy Imaging of Soft Tissues: System Development and Feasibility
,”
Phys. Med. Biol.
0031-9155,
49
, pp.
3925
3938
.
42.
Tepic
,
S.
,
Macirowski
,
T.
, and
Mann
,
W. R.
, 1983, “
Mechanical Properties of Articular Cartilage Elucidated by Osmotic Loading and Ultrasound
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
80
, pp.
3331
3333
.
43.
Wang
,
Q.
, and
Zheng
,
Y. P.
, 2006, “
Non-Contact Evaluation of Osmosis-Induced Shrinkage and Swelling Behavior of Articular Cartilage In Situ Using High-Frequency Ultrasound
,”
Instrum. Sci. Technol.
1073-9149
34
, pp.
317
334
.
44.
Zheng
,
Y. P.
,
Shi
,
J.
,
Qin
,
L.
,
Patil
,
S. G.
,
Mow
,
V. C.
, and
Zhou
,
K. Y.
, 2004, “
Dynamic Depth-Dependent Osmotic Swelling and Solute Diffusion in Articular Cartilage Monitored Using Real-Time Ultrasound
,”
Ultrasound Med. Biol.
0301-5629,
30
, pp.
841
849
.
45.
Mow
,
V. C.
,
Kuer
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
0148-0731,
102
, pp.
73
84
.
46.
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1985, “
Singular Perturbation Analysis of the Nonlinear, Flow-Dependent Compressive Stress Relaxation Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
107
, pp.
206
218
.
47.
Holmes
,
M. H.
, and
Mow
,
V. C.
, 1990, “
The Nonlinear Characteristics of Soft Eels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
0021-9290,
23
, pp.
1145
1156
.
48.
Kwan
,
M. K.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1990, “
A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results
,”
J. Biomech.
0021-9290,
23
, pp.
145
155
.
49.
Cohen
,
B.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
491
496
.
50.
Mak
,
A. F.
, 1986, “
The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
0148-0731,
108
, pp.
123
130
.
51.
Fung
,
Y. C. B.
, 1972, “
Stress-Strain History Relation of Soft Tissues in Simple Elongation
,” in
Biomechanics: Its Foundations and Objectives
,
Prentice-Hall
,
Englewood Cliffs
.
52.
Basser
,
P. J.
,
Schneiderman
,
R.
,
Bank
,
R. A.
,
Wachtel
,
E.
, and
Maroudas
,
A.
, 1998, “
Mechanical Properties of the Collagen Network in Human Articular Cartilage as Measured by Osmotic Stress Technique
,”
Arch. Biochem. Biophys.
0003-9861,
351
, pp.
207
219
.
53.
Bursac
,
P.
,
McGrath
,
C. V.
,
Eisenberg
,
S. R.
, and
Stamenovic
,
D.
, 2000, “
A Microstructural Model of Elastostatic Properties of Articular Cartilage in Confined Compression
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
347
353
.
54.
Buschmann
,
M. D.
, and
Grodzinsky
,
A. J.
, 1995, “
A Molecular Model of Proteoglycan-Associated Electrostatic Forces in Cartilage Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
179
192
.
55.
Khalsa
,
P. S.
, and
Eisenberg
,
S. R.
, 1997, “
Compressive Behavior of Articular Cartilage is Not Completely Explained by Proteoglycan Osmotic Pressure
,”
J. Biomech.
0021-9290,
30
(
6
), pp.
589
594
.
56.
Kovach
,
I. S.
, 1995, “
The Importance of Polysaccharide Configurational Entropy in Determining the Osmotic Swelling Pressure of Concentrated Proteoglycan Solution and the Bulk Compressive Modulus of Articular Cartilage
,”
Biophys. Chem.
0301-4622,
53
(
3
), pp.
181
187
.
57.
Maroudas
,
A.
, 1979, “
Physicochemical Properties of Articular Cartilage
,” in
Adult Articular Cartilage
, 2nd ed.,
M. A. R.
Freeman
, ed.,
Pitman Medical
, pp.
215
290
.
58.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
, 1987, “
Cartilage Electromechanics—I. Electrokinetic Transduction and the Effects of pH and Ionic Strength
,”
J. Biomech.
0021-9290,
20
, pp.
615
627
.
59.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
, 1987, “
Cartilage Electromechanics—II. A Continuum Model of Cartilage Electrokinetics and Correlations With Experiments
,”
J. Biomech.
0021-9290,
20
, pp.
629
639
.
60.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1993, “
Transport of Fluid and Ions Through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
0021-9290,
26
, pp.
709
723
.
61.
Ophir
,
J.
,
Alam
,
S. K.
,
Garra
,
B.
,
Kallel
,
F.
,
Konofagou
,
E.
,
Krouskop
,
T.
, and
Varghese
,
T.
, 1999, “
Elastography: Ultrasonic Estimation and Imaging of the Elastic Properties of Tissues
,”
Proc. Inst. Mech. Eng.
0020-3483,
213
, pp.
203
233
.
62.
Bowen
,
R. M.
, 1980, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
18
, pp.
1129
1148
.
63.
Truesdell
,
C.
, and
Toupin
,
R. A.
, 1960,
The Classical Field Theories, Handbuch der Physik III∕1
,
Springer-Verlag
,
Berlin
.
64.
Setton
,
L. A.
,
Gu
,
W.
,
Lai
,
M. W.
, and
Mow
,
V. C.
, 1995, “
Predictions of Swelling-Induced Prestress in Articular Cartilage
,” in
Mechanics of Poroelastic Media
,
A. P. S.
Selvadurai
, ed.,
Kluwer Academic
,
Dordrecht
, pp.
299
320
.
65.
Wang
,
C. C.-B.
,
Guo
,
X. E.
,
Sun
,
D. N.
,
Mow
,
V. C.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2002, “
The Functional Environment of Chondrocytes Within Cartilage Subjected to Compressive Loading: A Theoretical and Experimental Approach
,”
Biorheology
0006-355X,
39
, pp.
11
25
.
66.
Shapiro
,
E. M.
,
Borthakur
,
A.
,
Kaufman
,
J. H.
,
Leigh
,
J. S.
, and
Reddy
,
R.
, 2001, “
Water Distribution Patterns Inside Bovine Articular Cartilage as Visualized by H1 Magnetic Resonance Imaging
,”
Osteoarthritis Cartilage
1063-4584,
9
, pp.
533
538
.
67.
Chen
,
A. C.
,
Bae
,
W. C.
,
Schinagl
,
R. M.
, and
Sah
,
R. L.
, 2001, “
Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression
,”
J. Biomech.
0021-9290,
34
(
1
), pp.
1
12
.
68.
Wang
,
C. C.-B.
,
Hung
,
C. T.
, and
Mow
,
V. C.
, 2001, “
An Analysis of the Effects of Depth-Dependent Aggregate Modulus on Articular Cartilage Stress-Relaxation Behavior in Compression
,”
J. Biomech.
0021-9290,
34
, pp.
75
84
.
69.
Maroudas
,
A.
,
Mizrahi
,
J.
,
Katz
,
E. P.
,
Wachtel
,
E. J.
, and
Soudry
,
M.
, 1986, “
Physicochemical Properties and Functional Behavior of Normal and Osteoarthritic Human Cartilage
,” in
Articular Cartilage Biochemistry
,
K. E.
Kuettner
,
R.
Schleyerbach
,
V. C.
Hascall
, eds.,
Raven
,
New York
, pp.
311
329
.
70.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
, 1991, “
Interspecies Comparisons of in situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
0736-0266,
9
(
3
), pp.
330
340
.
You do not currently have access to this content.