Background. In vivo experimentation is the most realistic approach for exploring the vascular biological response to the hemodynamic stresses that are present in life. Post-mortem vascular casting has been used to define the in vivo geometry for hemodynamic simulation; however, this procedure damages or destroys the tissue and cells on which biological assays are to be performed. Method of Approach. Two statistical approaches, regional (RSH) and linear (LSH) statistical hemodynamics, are proposed and illustrated, in which flow simulations from one series of experiments are used to define a best estimate of the hemodynamic environment in a second series. As an illustration of the technique, RSH is used to compare the gene expression profiles of regions of the proximal external iliac arteries of swine exposed to different levels of time-average shear stress. Results. The results indicate that higher shears promote a more atheroprotective expression phenotype in porcine arterial endothelium. Conclusion. Statistical hemodynamics provides a realistic estimate of the hemodynamic stress on vascular tissue that can be correlated against biological response.

1.
Steinman
,
D. A.
,
Thomas
,
J. B.
,
Ladak
,
H. M.
,
Milner
,
J. S.
,
Rutt
,
B. K.
, and
Spence
,
J. D.
, 2002, “
Reconstruction of Carotid Bifurcation Hemodynamics and Wall Thickness Using Computational Fluid Dynamics and Mri
,”
Magn. Reson. Med.
0740-3194,
47
(
1
), pp.
149
159
.
2.
Wood
,
N. B.
,
Weston
,
S. J.
,
Kilner
,
P. J.
,
Gosman
,
A. D.
, and
Firmin
,
D. N.
, 2001, “
Combined Mr Imaging and Cfd Simulation of Flow in the Human Descending Aorta
,”
J. Magn. Reson Imaging
1053-1807,
13
(
5
), pp.
699
713
.
3.
Friedman
,
M. H.
, 1993, “
Arteriosclerosis Research Using Vascular Flow Models: From 2-D Branches to Compliant Replicas
,”
ASME J. Biomech. Eng.
0148-0731,
115
(
4B
), pp.
595
601
.
4.
Goubergrits
,
L.
,
Affeld
,
K.
,
Fernandez-Britto
,
J.
, and
Falcon
,
L.
, 2002, “
Atherosclerosis and Flow in Carotid Arteries with Authentic Geometries
,”
Biorheology
0006-355X,
39
(
3–4
), pp.
519
524
.
5.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X. M.
, and
Friedman
,
M. H.
, 2004, “
Spatial Comparison between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
286
(
5
), pp.
H1916
1922
.
6.
Moore
,
J. A.
,
Rutt
,
B. K.
,
Karlik
,
S. J.
,
Yin
,
K.
, and
Ethier
,
C. R.
, 1999, “
Computational Blood Flow Modeling Based on in vivo Measurements
,”
Ann. Biomed. Eng.
0090-6964,
27
(
5
), pp.
627
640
.
7.
Hazel
,
A. L.
, and
Friedman
,
M. H.
, 2000, “
Method for Assessing the Need for Case-Specific Hemodynamics: Application to the Distribution of Vascular Permeability
,”
Ann. Biomed. Eng.
0090-6964,
28
(
11
), pp.
1300
1306
.
8.
Dekker
,
R. J.
,
van Soest
,
S.
,
Fontijn
,
R. D.
,
Salamanca
,
S.
,
de Groot
,
P. G.
,
VanBavel
,
E.
,
Pannekoek
,
H.
, and
Horrevoets
,
A. J.
, 2002, “
Prolonged Fluid Shear Stress Induces a Distinct Set of Endothelial Cell Genes, Most Specifically Lung Kruppel-Like Factor (Klf2)
,”
Blood
0006-4971,
100
(
5
), pp.
1689
1698
.
9.
McCormick
,
S. M.
,
Frye
,
S. R.
,
Eskin
,
S. G.
,
Teng
,
C. L.
,
Lu
,
C. M.
,
Russell
,
C. G.
,
Chittur
,
K. K.
, and
McIntire
,
L. V.
, 2003, “
Microarray Analysis of Shear Stressed Endothelial Cells
,”
Biorheology
0006-355X,
40
(
1–3
), pp.
5
11
.
10.
Ohura
,
N.
,
Yamamoto
,
K.
,
Ichioka
,
S.
,
Sokabe
,
T.
,
Nakatsuka
,
H.
,
Baba
,
A.
,
Shibata
,
M.
,
Nakatsuka
,
T.
,
Harii
,
K.
,
Wada
,
Y.
,
Kohro
,
T.
,
Kodama
,
T.
, and
Ando
,
J.
, 2003, “
Global Analysis of Shear Stress-Responsive Genes in Vascular Endothelial Cells
,”
J Atheroscler Thromb.
,
10
(
5
), pp.
304
313
.
11.
Chen
,
B. P.
,
Li
,
Y. S.
,
Zhao
,
Y.
,
Chen
,
K. D.
,
Li
,
S.
,
Lao
,
J.
,
Yuan
,
S.
,
Shyy
,
J. Y.
, and
Chien
,
S.
, 2001, “
DNA Microarray Analysis of Gene Expression in Endothelial Cells in Response to 24-H Shear Stress
,”
Physiol. Genomics
1094-8341,
7
(
1
), pp.
55
63
.
12.
Beck
,
L. H.
, Jr.
,
Goodwin
,
A. M.
, and
D’Amore
,
P. A.
, 2004, “
Culture of Large Vessel Endothelial Cells on Floating Collagen Gels Promotes a Phenotype Characteristic of Endothelium in Vivo
,”
Differentiation
0301-4681,
72
(
4
), pp.
162
170
.
13.
Passerini
,
A. G.
,
Polacek
,
D. C.
,
Shi
,
C.
,
Francesco
,
N. M.
,
Manduchi
,
E.
,
Grant
,
G. R.
,
Pritchard
,
W. F.
,
Powell
,
S.
,
Chang
,
G. Y.
,
Stoeckert
,
C. J.
, Jr.
, and
Davies
,
P. F.
, 2004, “
Coexisting Proinflammatory and Antioxidative Endothelial Transcription Profiles in a Disturbed Flow Region of the Adult Porcine Aorta
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
8
), pp.
2482
2487
.
14.
Conklin
,
B. S.
,
Zhong
,
D. S.
,
Zhao
,
W.
,
Lin
,
P. H.
, and
Chen
,
C.
, 2002, “
Shear Stress Regulates Occludin and Vegf Expression in Porcine Arterial Endothelial Cells
,”
J. Surg. Res.
0022-4804,
102
(
1
), pp.
13
21
.
15.
LaMack
,
J. A.
,
Himburg
,
H. A.
,
Li
,
X. M.
, and
Friedman
,
M. H.
, 2005, “
Interaction of Wall Shear Stress Magnitude and Gradient in the Prediction of Arterial Macromolecular Permeability
,”
Ann. Biomed. Eng.
0090-6964,
33
(
4
), pp.
457
464
.
You do not currently have access to this content.