This work describes the design and capabilities of the Purdue Knee Simulator: Mark II and a sagittal-plane model of the machine. This five-axis simulator was designed and constructed to simulate dynamic loading activities on either cadaveric knee specimens or total knee prostheses mounted on fixtures. The purpose of the machine was to provide a consistent, realistic loading of the knee joint, allowing the kinematics and specific loading of the structures of the knee to be determined based on condition, articular geometry, and simulated activity. The sagittal-plane model of the knee simulator was developed both to predict the loading at the knee from arbitrary inputs and to generate the necessary inputs required to duplicate specified joint loading. Measured tibio-femoral compressive force and quadriceps tension were shown to be in good agreement with the predicted loads from the model. A controlled moment about the ankle-flexion axis was also shown to change the loading on the quadriceps.

1.
Ahmed
,
A. M.
,
Burke
,
D. L.
, and
Yu
,
A.
,
1983
, “
In vitro Measurement of Static Pressure Distribution in Synovial Joints—Part II: Retropateller Surface
,”
ASME J. Biomech. Eng.
,
105
, pp.
226
236
.
2.
van Kampen
,
A.
, and
Huiskes
,
R.
,
1990
, “
The Three-Dimensional Tracking Pattern of the Human Patella
,”
J. Orthop. Res.
,
8
, pp.
372
382
.
3.
Biden, E., and O’Connor, J., 1990, “Experimental Methods Used to Evaluate Knee Ligament Function,” in Knee Ligaments: Structure, Function, Injury, and Repair, Raven Press, New York, NY, Chap. 8, pp. 135–151.
4.
Whiteside
,
L. A.
,
Kasselt
,
M. R.
, and
Haynes
,
D. W.
,
1987
, “
Varus-Valgus and Rotational Stability in Rotationally Unconstrained Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
219
, pp.
147
157
.
5.
Bach
,
J. M.
, and
Hull
,
M. L.
,
1994
, “
Description and Evaluation of a New Load Application System for In Vitro Study of Ligamentous Injuries to the Human Knee Joint
,”
ASME Bioeng. Div. Publ. Bed.
,
28
, pp.
283
284
.
6.
Li
,
G.
,
Rudy
,
T. W.
,
Sakane
,
M.
,
Kanamori
,
A.
,
Ma
,
C. B.
, and
Woo
,
S. L.
,
1999
, “
The Importance of Quadriceps and Hamstring Muscle Loading on Knee Kinematics and In-Situ Forces in the ACL
,”
J. Biomech.
,
32
, pp.
395
400
.
7.
Walker
,
P. S.
,
Blunn
,
G. W.
,
Broome
,
D. R.
,
Perry
,
J.
,
Watkins
,
A.
,
Sathasivam
,
S.
,
Dewar
,
M. E.
, and
Paul
,
J. P.
,
1997
, “
A Knee Simulating Machine for Performance Evaluation of Total Knee Replacements
,”
J. Biomech.
,
30
, pp.
83
89
.
8.
Burgess
,
I. C.
,
Kolar
,
M.
,
Cunningham
,
J. L.
, and
Unsworth
,
A.
,
1997
, “
Development of a Six Station Knee Wear Simulator and Preliminary Wear Results
,”
Proc. Inst. Mech. Eng.
,
211
, pp.
37
47
.
9.
Currier
,
J. H.
,
Duda
,
J. L.
,
Sperling
,
D. K.
,
Collier
,
J. P.
,
Currier
,
B. H.
, and
Kennedy
,
F. E.
,
1998
, “
In Vitro Simulation of Contact Fatigue Damage Found in Ultra-High Molecular Weight Polyethylene Components of Knee Prostheses
,”
Proc. Inst. Mech. Eng.
,
212
, pp.
293
302
.
10.
Shaw
,
J. A.
, and
Murray
,
D. G.
,
1973
, “
Knee Joint Simulator
,”
Clin. Orthop. Relat. Res.
,
94
, pp.
15
23
.
11.
Zachman
,
N. J.
,
Hillberry
,
B. M.
, and
Kettelkamp
,
D. B.
,
1978
, “
Design of a Load Simulator for the Dynamic Evaluation of Prosthetic Knee Joints,” ASME publication 78–DET-59, pp. 1–11.
12.
Paul, I. L., Chernack, R., Manzi, S. F., Rose, R. M., Radin, E. L., and Simon, S. R., 1977, “Comparative Behavior of Total Knee Prostheses in a Knee Simulator,” Trans. 23rd Annu. Meet.—Orthop. Res. Soc., p. 257.
13.
Young, R. W., Young, S. R., and Treharne, R. W., 1979, “Simulation of the Knee Joint Using a Computer Controlled System,” Trans. 25th Annu. Meet.—Orthop. Res. Soc., San Francisco, CA, Feb. 20–22, p. 206.
14.
Pappas
,
M. J.
, and
Buechel
,
F. F.
,
1979
, “
New Jersey Knee Simulator
,”
Trans. 11th Annu. Internat. Biomat. Symp.
,
3
, p.
101
101
.
15.
Ahmed
,
A. M.
,
Burke
,
D. L.
, and
Hyder
,
A.
,
1987
, “
Force Analysis of the Patellar Mechanism
,”
J. Orthop. Res.
,
5
, pp.
69
85
.
16.
DiAngelo
,
D. J.
, and
Harrington
,
I. A.
,
1992
, “
Design of a Dynamic Multi-Purpose Joint Simulator
,”
ASME Bioeng. Div. Publ. Bed.
,
22
, pp.
107
110
.
17.
Pavlovic
,
J. L.
,
Kirstukas
,
S. J.
,
Touchi
,
H.
,
Bechtold
,
J. E.
, and
Gustilo
,
R. B.
,
1994
, “
Dynamic Simulation Machine for Measurements of Knee Mechanics and Intra-Articular Pressures
,”
ASME Bioeng. Div. Publ. Bed.
,
28
, pp.
277
278
.
18.
Chao
,
E. Y. S.
,
MacWilliams
,
B. A.
,
Chan
,
B.
, and
Meija
,
L.
,
1994
, “
Evaluation of a Dynamic Joint Simulator
,”
ASME Bioeng. Div. Publ. Bed.
,
28
, pp.
281
282
.
19.
Benda, F. P., 1995, “Design and Analysis of a Knee Simulator Control Program,” MSME thesis, Purdue University, West Lafayette, IN.
20.
Morrison
,
J. B.
,
1970
, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
,
3
, pp.
51
61
.
21.
Hersh, J. F., 1980, “Laboratory Evaluation of Knee Prostheses,” MSME thesis, Purdue University, West Lafayette, IN.
22.
Hardt
,
D. E.
,
1978
, “
Determining Muscle Forces in the Leg During Normal Human Walking—An Application and Evaluation of Optimization Methods
,”
ASME J. Biomech. Eng.
,
100
, pp.
72
78
.
23.
Crowninshield
,
R. D.
, and
Brand
,
R. A.
,
1981
, “
A Physiologically Based Criterion of Muscle Force Prediction in Locomotion
,”
J. Biomech.
,
14
, pp.
793
801
.
24.
Glitsch
,
U.
, and
Baumann
,
W.
,
1997
, “
The Three-Dimensional Determination of Internal Loads in the Lower Extremity
,”
J. Biomech.
,
30
, pp.
1123
1131
.
25.
Komistek
,
R. D.
,
Stiehl
,
J. B.
,
Dennis
,
D. A.
,
Paxson
,
R. D.
, and
Soutas-Little
,
R. W.
,
1998
, “
Mathematical Model of the Lower Extremity Joint Reaction Forces Using Kane’s Method of Dynamics
,”
J. Biomech.
,
31
, pp.
185
189
.
26.
ISO 14243-1 Implants for surgery—Wear of total knee-joint prostheses—Part 1: Loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for test, 2002.
27.
Maletsky
,
L. P.
, and
Hillberry
,
B. M.
,
1997
, “
Computer Modeling of Knee Simulator Tibio-Femoral and Patello-Femoral Loading
,”
ASME Dyn. Syst., Control, Div. Publ. Dsc
61
, pp.
387
392
.
28.
Maletsky, L. P., 1999, “Validation of the Next Generation Knee Simulator,” Ph.D. thesis, Purdue University, West Lafayette, IN.
29.
Kinzel
,
G. L.
,
Hall
,
A. S.
, and
Hillberry
,
B. M.
,
1972
, “
Measurement of the Total Motion Between Two Body Segments—I. Analytical Development
,”
J. Biomech.
,
5
, pp.
93
105
.
30.
Rullkoetter, P. J., McGuan, S., and Maletsky, L. P., 1999, “Development and Verification of a Virtual Knee Simulator for TKR Evaluation,” Trans. 45th Annul. Meet—Orthop. Res. Soc., Anaheim, CA, Feb. 1–4, p. 973.
31.
Singerman
,
R.
,
Berilla
,
J.
, and
Davy
,
D. T.
,
1995
, “
Direct In Vitro Determination of the Patellofemoral Contact Force for Normal Knees
,”
ASME J. Biomech. Eng.
,
117
, pp.
8
14
.
32.
Andriacchi
,
T. P.
,
1979
, Force Plate and Motion Data, Rush-Presbyterian St. Lukes Medical Center, Chicago, Illinois.
You do not currently have access to this content.