Much of our understanding of vascular mechanotransduction has come from studies using either cell culture or in vivo animal models, but the recent success of organ culture systems offers an exciting alternative. In studying cell-mediated vascular adaptations to altered loading, organ culture allows one to impose well-controlled mechanical loads and to perform multiaxial mechanical tests on the same vessel throughout the culture period, and thereby to observe cell-mediated vascular adaptations independent of neural and hormonal effects. Here, we present a computer-controlled perfused organ culture and biomechanical testing device designed for small caliber (50–5000 micron) blood vessels. This device can control precisely the pulsatile pressure, luminal flow, and axial load (or stretch) and perform intermittent biaxial (pressure–diameter and axial load–length) and functional tests to quantify adaptations in mechanical behavior and cellular function, respectively. Device capabilities are demonstrated by culturing mouse carotid arteries for 4 days.

1.
Bardy
,
N.
,
Karillon
,
G. J.
,
Merval
,
R.
,
Samuel
,
J.-L.
, and
Tedgui
,
A.
,
1995
, “
Differential Effects of Pressure and Flow on DNA and Protein Synthesis and on Fibronectin Expression by Arteries in a Novel Organ Culture System
,”
Circ. Res.
,
77
, pp.
684
694
.
2.
Labadie
,
R. F.
,
Antaki
,
J. F.
,
Williams
,
J. L.
,
Katyal
,
S.
,
Ligush
,
J.
,
Watkins
,
S. C.
,
Pham
,
S. M.
, and
Borovetz
,
H. S.
,
1996
, “
Pulsatile Perfusion System for Ex Vivo Investigation of Biochemical Pathways in Intact Vascular Tissue
,”
Am. J. Physiol.
,
270
(Heart Circ. Physiol. 39 pp. ),
H760–H768
H760–H768
.
3.
Chestler
,
N. C.
,
Conklin
,
B. S.
,
Han
,
H.-C.
, and
Ku
,
D. K.
,
1998
, “
Simplified Ex Vivo Artery Culture Techniques for Porcine Arteries
,”
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
,
4
, pp.
123
127
.
4.
Matsumoto
,
T.
,
Okumura
,
E.
,
Miura
,
Y.
, and
Sato
,
M.
,
1999
, “
Mechanical and Dimensional Adaptation of Rabbit Carotid Artery In Vitro
,”
Med. Biol. Eng. Comput.
,
37
, pp.
252
256
.
5.
Bakker
,
E. N. T. P.
,
van der Meulen
,
E. T.
,
Spaan
,
J. A. E.
, and
VanBavel
,
E.
,
2000
, “
Organoid Culture of Cannulated Rat Resistance Arteries: Effect of Serum Factors on Vasoactivity and Remodeling
,”
Am. J. Physiol.
,
278
, pp.
H1233–H1240
H1233–H1240
.
6.
Bolz
,
S.-S.
,
Pieperhoff
,
S.
,
de Wit
,
C.
, and
Pohl
,
U.
,
2000
, “
Intact Endothelial and Smooth Muscle Function in Small Resistance Arteries after 48 h in Vessel Culture
,”
Am. J. Physiol.
,
279
, pp.
H1434–H1439
H1434–H1439
.
7.
Clerin
,
V.
,
Nichol
,
J. W.
,
Petko
,
M.
,
Myung
,
R. J.
,
Gaynor
,
J. W.
, and
Gooch
,
K. J.
,
2003
, “
Tissue Engineering of Arteries by Direct Remodeling of Intact Arterial Segments
,”
Tissue Eng.
,
9
, pp.
461
472
.
8.
Humphrey
,
J. D.
,
Kang
,
T.
,
Sakarda
,
P.
, and
Anjanappa
,
M.
,
1993
, “
Computer-aided Vascular Experimentation: A New Electromechanical Test System
,”
Ann. Biomed. Eng.
,
21
, pp.
33
43
.
9.
Hartley
,
C. J.
,
Michael
,
L. H.
, and
Enthman
,
M. L.
,
1995
, “
Noninvasive Measurement of Ascending Aortic Blood Velocity in Mice
,”
Am. J. Physiol.
,
268
, pp.
H499–H505
H499–H505
.
10.
Farrehi
,
P. M.
,
Ozaki
,
C. K.
,
Carmeliet
,
P.
, and
Fay
,
W. P.
,
1998
, “
Regulation of Arterial Thrombolysis by Plasminogen Activator Inhibitor-1 in Mice
,”
Circulation
,
97
, pp.
1002
1008
.
11.
Transonic Systems, Inc., 1997, “Tools and Techniques for Hemodynamic Studies in Mice,” Available at http://www.transonic.com.
12.
Rudic
,
R. D.
,
Bucci
,
M.
,
Fulton
,
D.
,
Segal
,
S. S.
, and
Sessa
,
W. C.
,
2000
, “
Temporal Events Underlying Arterial Remodeling after Chronic Flow reduction in Mice. Correlation of Structural Changes with a Deficit in Basal Nitric Oxide Synthesis
,”
Circ. Res.
,
86
, pp.
1160
1166
.
13.
Sullivan
,
C. J.
, and
Hoying
,
J. B.
,
2002
, “
Flow-dependent Remodeling in the Carotid Artery of Fibroblast Growth Factor-2 Knockout Mice
,”
Arterioscler., Thromb., Vasc. Biol.
,
22
(
7
), pp.
1100
1105
.
14.
Gross
,
V.
, and
Luft
,
F. C.
,
2003
, “
Exercising Restraint in Measuring Blood Pressure in Conscious Mice
,”
Hypertension
,
41
, pp.
879
881
.
15.
Li
,
Y.-H.
,
Reddy
,
A. K.
,
Taffet
,
G. E.
,
Michael
,
L. H.
,
Entman
,
M. L.
, and
Hartley
,
C. J.
,
2003
, “
Doppler Evaluation of Peripheral Vascular Adaptations to Transverse Aortic Banding in Mice
,”
Ultrasound Med. Biol.
,
29
(
9
), pp.
1281
1289
.
16.
Langille
,
B. L.
,
Bendeck
,
M. L.
, and
Keeley
,
F. W.
,
1989
, “
Adaptations of Carotid Arteries of Young and Mature Rabbits to Reduced Carotid Blood Flow
,”
Am. J. Physiol.
,
256
(Heart Circ. Physiol. 25), pp.
H931–H939
H931–H939
.
17.
Matsumoto
,
T.
, and
Hayashi
,
K.
,
1994
, “
Mechanical and Dimensional Adaptation of Rat Aorta to Hypertension
,”
ASME J. Biomech. Eng.
,
116
, pp.
278
283
.
18.
Jackson
,
Z. S.
,
Gotlieb
,
A. I.
, and
Langille
,
L.
,
2002
, “
Wall Tissue Remodeling Regulates Longitudinal Tension in Arteries
,”
Circ. Res.
,
90
, pp.
918
925
.
19.
Mangiarua
,
E. I.
,
Moss
,
N.
,
Lemke
,
S. M.
,
McCumbee
,
W. D.
,
Szarek
,
J. J.
, and
Gruetter
,
C. A.
,
1992
, “
Morphological and Contractile Characteristics of Rat Aortae Perfused for 3 and 6 Days In Vitro
,”
Artery
,
19
, pp.
14
38
.
20.
Han
,
H.-C.
, and
Ku
,
D. N.
,
2001
, “
Contractile Response in Arteries Subjected to Hypertensive Pressure in Seven-day Organ Culture
,”
Ann. Biomed. Eng.
,
29
, pp.
467
475
.
21.
Kim
,
I.
,
Je
,
H.-D.
,
Gallant
,
C.
,
Zhan
,
Q.
,
Va Riper
,
D.
,
Badwey
,
J. A.
,
Singer
,
H. A.
, and
Morgan
,
K. G.
,
2000
, “
Ca2+-Calmodulin-dependent Protein Kinase II-Dependent Activation of Contractility in Ferret Aorta
,”
J Physio.
,
256
, 2, pp.
367
374
.
22.
Lemarie
,
C. A.
,
Esposito
,
B.
,
Tedgui
,
A.
, and
Lehoux
,
S.
,
2003
, “
Pressure-induced Vascular Adaptation of Nuclear Factor-κB. Role of Cell Survival
,”
Circ. Res.
,
93
, pp.
207
212
.
23.
Lehoux
,
S.
,
Lemarie
,
C. A.
,
Esposito
,
B.
,
Lijnen
,
H. R.
, and
Tedgui
,
A.
,
2004
, “
Pressure-induced Matrix Metalloproteinase-9 Contributes to Early Hypertension Remodeling
,”
Circulation
,
109
, pp.
1041
1047
.
24.
Vorp
,
D. A.
,
Severyn
,
D. A.
,
Steed
,
D. L.
, and
Webster
,
M. W.
,
1996
, “
A Device for the Application of Cyclic Twist and Extension on Perfused Vascular Segments
,”
Am. J. Physiol.
,
270
(Heart Circ. Physiol. 39), pp.
H787–H795
H787–H795
.
25.
Gan
,
L.
,
Sjogren
,
L. S.
,
Doroudi
,
R.
, and
Jern
,
S.
,
1999
, “
A New Computerized Biomechanical Perfusion Model for Ex Vivo Study of Fluid Mechanical Forces in Intact Conduit Vessels
,”
J. Vasc. Res.
,
36
, pp.
68
78
.
26.
Faury
,
G.
,
Maher
,
G. M.
,
Li
,
D. Y.
,
Keating
,
M. T.
,
Mecham
,
R. P.
, and
Boyle
,
W. A.
,
1999
, “
Relation between Outer and Luminal Diameter in Cannulated Arteries
,”
Am. J. Physiol.
,
277
(Heart Circ. Physiol. 46), pp.
H1745–H1753
H1745–H1753
.
27.
Faury
,
G.
,
Pezet
,
M.
,
Knutsen
,
R. H.
,
Boyle
,
W. A.
,
Heximer
,
S. P.
,
McLean
,
S. E.
,
Minkes
,
R. E.
,
Blumer
,
K. L.
,
Kovacs
,
A.
,
Kelly
,
D. P.
,
Li
,
D. Y.
,
Starcher
,
B.
, and
Mecham
,
R. P.
,
2003
, “
Developmental Adaptation of the Mouse Cardiovascular System to Elastin Haploinsufficiency
,”
J. Clin. Invest.
,
112
, pp.
1419
1428
.
28.
Niklason
,
L. E.
,
Gao
,
J.
,
Abbot
,
J. M.
,
Hirschi
,
K. K.
,
Houser
,
S.
,
Marini
,
R.
, and
Langer
,
R.
,
1999
, “
Functional Arteries Grown In Vitro
Science
,
284
, pp.
489
493
.
29.
Moore
,
J. E.
,
Burki
,
E.
,
Suciu
,
A.
,
Zhao
,
S.
,
Burnier
,
M.
,
Brunner
,
H. R.
, and
Meister
,
J.-J.
,
1994
, “
A Device for Subjection Vascular Endothelial Cells to both Fluid Shear Stress and Circumferential Cyclic Stretch
,”
Ann. Biomed. Eng.
,
22
, pp.
416
422
.
30.
Brant
,
A. M.
,
Chmielewski
,
J. F.
,
Hung
,
T.-K.
, and
Borovetz
,
H. S.
,
1986
, “
Simulation In Vitro of Pulsatile Vascular Hemodynamics using a CAD/CAM-designed Cam Disc and Roller Follower
,”
Artif. Organs
,
10
, pp.
419
421
.
31.
Taber
,
L. A.
,
1998
, “
A Model of Aortic Growth based on Fluid Shear and Fiber Stresses
,”
ASME J. Biomech. Eng.
,
120
, pp.
348
354
.
32.
Rachev
,
A.
,
2000
, “
A Model of Arterial Adaptation to Alterations in blood flow
,”
J. Elast.
,
61
, pp.
83
111
.
33.
Gleason
,
R. L.
,
Taber
,
L. A.
, and
Humphrey
,
J. D.
,
2004
, “
A 2-D Model of Flow-induced Alterations in the Geometry, Structure, and Properties of Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
pp.
371
381
.
34.
Humphrey, J. D., 2002, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer, New York.
You do not currently have access to this content.