The objectives of the work reported in this article were to develop a novel 6-degree-of-freedom (DOF) robotic system for knee joint biomechanics, to complete a hybrid force-position control scheme, to evaluate the system performance, and to demonstrate a combined loading test. The manipulator of the system utilizes two mechanisms; the upper mechanism has two translational axes and three rotational axes while the lower mechanism has only a single translational axis. All axes were driven with AC servo-motors. This unique configuration results in a simple kinematic description of manipulator motion. Jacobian transformation was used to calculate both the displacement and force/moment, which allowed for a hybrid control of the displacement of, and force/moment applied to, the human knee joint. The control and data acquisition were performed on a personal computer in the C-language programming environment with a multi-tasking operating system. Preliminary tests revealed that the clamp-to-clamp compliance of the system was smaller in the vertical (Z) and longitudinal (Y) directions (0.001 mm/N) than in lateral (X) direction (0.003 mm/N). The displacement error under the application of 500 N of load was smallest in the vertical direction (0.001±0.003 mm (mean±SD), and largest in the lateral direction (0.084±0.027 mm). Using this test system, it was possible to simulate multiple loading conditions in a human knee joint in which a cyclic anterior force was applied together with a coupled, joint compressive force, while allowing natural knee motion. The developed system seems to be a useful tool for studies of knee joint biomechanics.

1.
Ahmed
,
A. M.
,
Hyder
,
A.
,
Burke
,
D. L.
, and
Chan
,
K. H.
,
1987
, “
In Vitro Ligament Tension Pattern in the Flexed Knee in Passive Loading
,”
J. Orthop. Res.
,
5
, pp.
217
230
.
2.
Bach
,
J. M.
, and
Hull
,
M. L.
,
1995
, “
A New Load Application System for In Vitro Study of Ligamentous Injuries to the Human Knee Joint
,”
ASME J. Biomech. Eng.
,
117
, pp.
373
382
.
3.
Hollis
,
J. M.
,
Takai
,
S.
,
Adams
,
D. J.
,
Horibe
,
S.
, and
Woo
,
S. L.-Y.
,
1991
, “
The Effects of Knee Motion and External Loading on the Length of the Anterior Cruciate Ligament (ACL): A Kinematic Study
,”
ASME J. Biomech. Eng.
,
113
, pp.
208
214
.
4.
Lewis
,
J. L.
,
Lew
,
W. D.
, and
Schmidt
,
J.
,
1988
, “
Description and Error Evaluation of an In Vitro Knee Joint Testing System
,”
ASME J. Biomech. Eng.
,
110
, pp.
238
248
.
5.
MacWilliams, B. A., Chao, E. Y., and Mejia, L. C., 1994, “Design and Performance Features of a Knee Dynamic Simulator,” Abstract, Second World Congress of Biomechanics, Blankevoort, L., and Kooloos, J. G. M., eds., p. 364.
6.
Markolf
,
K. L.
,
Gorek
,
J. F.
,
Kabo
,
J. M.
, and
Shapiro
,
M. S.
,
1990
, “
Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg.
,
72A
, pp.
557
567
.
7.
Mills
,
O. S.
, and
Hull
,
M. L.
,
1991
, “
Rotational Flexibility of the Human Knee Due to Varus/Valgus and Axial Moments in Vivo
,”
J. Biomech.
,
24
, pp.
673
690
.
8.
Berns
,
G. S.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
,
1990
, “
Implementation of a Five Degree of Freedom Automated System to Determine Knee Flexibility In Vitro
,”
ASME J. Biomech. Eng.
,
112
, pp.
392
400
.
9.
Berns
,
G. S.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
,
1992
, “
Strain in the Anteromedial Bundle of the Anterior Cruciate Ligament Under Combination Loading
,”
J. Orthop. Res.
,
10
, pp.
167
176
.
10.
Butler
,
D. L.
,
Noyes
,
F. R.
, and
Grood
,
E. S.
,
1980
, “
Ligamentous Restraints to Anterior-Posterior Drawer in the Human Knee
,”
J. Bone Jt. Surg.
,
62A
, pp.
259
270
.
11.
Fukubayashi
,
B.
,
Torzilli
,
P. A.
,
Sherman
,
M. F.
, and
Warren
,
R. F.
,
1982
, “
An In Vitro Biomechanical Evaluation of Anterior-Posterior Motion of the Knee
,”
J. Bone Jt. Surg.
,
64A
, pp.
258
264
.
12.
Grood
,
E. S.
,
Noyes
,
F. R.
,
Butler
,
D. L.
, and
Suntay
,
W. J.
,
1981
, “
Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees
,”
J. Bone Jt. Surg.
,
63A
, pp.
1257
1269
.
13.
Hollis
,
J. M.
,
1995
, “
A Six-Degree-of Freedom Test System for the Study of Joint Mechanics and Ligament Forces
,”
ASME J. Biomech. Eng.
,
117
, pp.
383
389
.
14.
Takai
,
S.
,
Woo
,
S. L.-Y.
,
Livesay
,
G. A.
,
Adams
,
D. J.
, and
Fu
,
F. H.
,
1993
, “
Determination of the In Situ Load on the Human Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
11
, pp.
686
-
695
.
15.
Fujie
,
H.
,
Livesay
,
G. A.
,
Woo
,
S. L.-Y.
,
Kashiwaguchi
,
S.
, and
Blomstrom
,
G.
,
1995
, “
The Use of a Universal Force-Moment Sensor to Determine In-Situ Forces in Ligaments: A New Methodology
,”
ASME J. Biomech. Eng.
,
117
, pp.
1
7
.
16.
Livesay
,
G. A.
,
Fujie
,
H.
,
Kashiwaguchi
,
S.
,
Morrow
,
D. A.
,
Fu
,
F. H.
, and
Woo
,
S. L.-Y.
,
1995
, “
Determination of the In Situ Forces and Force Distribution Within the Human Anterior Cruciate Ligament
,”
Ann. Biomed. Eng.
,
23
, pp.
467
474
.
17.
Livesay
,
G. A.
,
Rudy
,
T. W.
,
Woo
,
S. L.-Y.
,
Runco
,
T. J.
,
Sakane
,
M.
,
Li
,
G.
, and
Fu
,
F. H.
,
1997
, “
Evaluation of the Effect of Joint Constraints on the In Situ Force Distribution in the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
15
, pp.
278
284
.
18.
Chao
,
E. Y.
,
1980
, “
Justification of a Triaxial Goniometer for the Measurement of Joint Rotation
,”
J. Biomech.
,
13
, pp.
989
1006
.
19.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
, pp.
136
144
.
20.
Fujie
,
H.
,
Mabuchi
,
K.
,
Woo
,
S. L.-Y.
,
Livesay
,
G. A.
,
Arai
,
S.
, and
Tsukamoto
,
Y.
,
1993
, “
The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology
,”
ASME J. Biomech. Eng.
,
115
,
211
217
.
21.
Fujie
,
H.
,
Livesay
,
G. A.
,
Fujita
,
M.
, and
Woo
,
S. L.-Y.
,
1996
, “
Forces and Moments in Six-DOF at the Human Knee Joint: Mathematical Description for Control
,”
J. Biomech.
,
29
, pp.
1577
1585
.
22.
Fujie, H., Mabuchi, K., Itoman, M., Tsukamoto, Y., Livesay, G. A., Woo, S. L.-Y., Sasada, T., and Ikeuchi, K., 1995, “The Use of a Robotic System for the Study of Joint Biomechanics: In-Situ Force in the Human Anterior Cruciate Ligament,” Proceedings, 1995 Advances in Bioengineering (ASME), Hull, M. L., ed., Vol. 31, pp. 219–220.
23.
Rudy
,
T. W.
,
Livesay
,
G. A.
,
Woo
,
S. L.-Y.
, and
Fu
,
F. H.
,
1996
, “
A Combined Robotic/Universal Force Sensor Approach to Determine In Situ Forces of Knee Ligaments
,”
J. Biomech.
,
29
, pp.
1357
1360
.
24.
Woo
,
S. L.-Y.
,
Chan
,
S. S.
, and
Yamaji
,
T.
,
1997
, “
Biomechanics of Knee Ligament Healing, Repair and Reconstruction
,”
J. Biomech.
,
30
, pp.
431
439
.
25.
Sakane
,
M.
,
Fox
,
R. J.
,
Woo
,
S. L.-Y.
,
Livesay
,
G. A.
,
Li
,
G.
, and
Fu
,
F. H.
,
1997
, “
In-Situ Forces in the Anterior Cruciate Ligament and Its Bundles in Response to Anterior Tibial Loads
,”
J. Orthop. Res.
,
15
, pp.
285
293
.
26.
Fox
,
R. J.
,
Harner
,
C. D.
,
Sakane
,
M.
,
Carlin
,
G. J.
, and
Woo
,
S. L.-Y.
, “
Determination of the In Situ Forces in the Human Posterior Cruciate Ligament Using Robotic Technology
,”
Am. J. Sports Med.
,
26
,
395
401
.
27.
Hoher
,
J.
,
Harner
,
C. D.
,
Vogrin
,
T. M.
,
Baek
,
G. H.
,
Carlin
,
G. J.
, and
Woo
,
S. L.-Y.
,
1998
, “
In Situ Forces in the Posterolateral Structures of the Knee under Posterior Tibial Loading in the Intact and Posterior Cruciate Ligament-Deficient Knee
,”
J. Orthop. Res.
,
16
, pp.
675
681
.
28.
Kanamori
,
A.
,
Woo
,
S. L.-Y.
,
Ma
,
C. B.
,
Zeminski
,
J.
,
Rudy
,
T. W.
,
Li
,
G.
, and
Livesay
,
G. A.
,
2000
, “
The Forces in the Anterior Cruciate Ligament and Knee Kinemtics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology
,”
Arthroscopy
,
16
, pp.
633
639
.
29.
Li
,
G.
,
Rudy
,
T. W.
,
Sakane
,
M.
,
Kanamori
,
A.
,
Ma
,
C. B.
, and
Woo
,
S. L.-Y.
,
1999
, “
The Importance of Quadriceps and Hamstring Muscle Loading on Knee Kinematics and In-Situ Forces in the ACL
,”
J. Biomech.
,
32
, pp.
395
400
.
30.
Stone
,
J. D.
,
Carlin
,
G. J.
,
Ishibashi
,
Y.
,
Harner
,
C. D.
, and
Woo
,
S. L.-Y.
, “
Assessment of Posterior Cruciate Ligament Graft Performance Using Robotic Technology
,”
Am. J. Sports Med.
,
24
, pp.
824
827
.
31.
Sekito, T., Fujie, H., Ota, Y., and Kozaburo, H., 1997, “Development of a Novel Robotic Simulator for the Analysis of Knee Mechanical Function,” Proceedings, 1997 Bioengineering Conference (ASME), Chandran, K. B., Vanderby, R., Jr., and Hefzy, M. S., eds., Vol. 35, pp. 393–394.
32.
Blankevoort, L., Kwak, S. D., Ahmad, C. S., Gardner, T. R., Grelsamer, R. P., Henry, J. H., Ateshian, G. A., and Mow, V. C., 1996, “Effects of Global and Anatomic Coordinate Systems on Knee Joint Kinematics,” Abstract, 10th Conference of the European Society of Biomechanics, Sloten, J. V., Lowet, G., Audekercke, R. V., and Perre, G. V. D., eds., pp. 260.
33.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1990
, “
Helical Axes of Passive Knee Joint Motions
,”
J. Biomech.
,
23
(
12
), pp.
1219
1229
.
34.
Paul, R. P., 1981, Robot Manipulators: Mathematics, Programming, and Control, The MIT Press, Cambridge, pp. 217–220.
35.
ASTM, 1996, Annual Book of ASTM (Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods), ASTM, Designation: E177-90a.
36.
Woo
,
S. L.-Y.
,
Hollis
,
J. M.
,
Adams
,
D. J.
,
Lyon
,
R. M.
, and
Takai
,
S.
, “
Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex: The Effects of Specimen Age and Orientation
,”
Am. J. Sports Med.
,
19
, pp.
217
225
.
You do not currently have access to this content.