Bio-artificial tissues are being developed as replacements for damaged biologic tissues. Their mechanical properties are critical for load bearing applications. Current testing protocols for bio-artificial tissues vary widely and often do not consider viscoelasticity. Uniaxial stretch tests were performed on fibroblast populated collagen matrices (FPCMs) to determine the influence of specific test protocols on the mechanical behavior. The peak force, hysteresis and shape of the force-stretch curve are affected by the stretch rate, rest period, stretch amplitude and the number and magnitude of preconditioning cycles.

1.
Bell
,
E.
,
Ivarsson
,
B.
, and
Merrill
,
C.
,
1979
, “
Production of a Tissue-Like Structure by Contraction of Collagen Lattices by Human Fibroblasts of Different Proliferative Potential In Vitro
,”
Proc. Natl. Acad. Sci. U.S.A.
,
76
, pp.
1274
1278
.
2.
Auger
,
F. A.
,
Rouabhia
,
M.
,
Goulet
,
F.
,
Berthod
,
F.
,
Moulin
,
V.
, and
Germain
,
L.
,
1998
, “
Tissue-Engineered Human Skin Substitutes From Collagen-Populated Hydrated Gels: Clinical and Findamental Applications
,”
Med. Biol. Eng. Comput.
,
36
, pp.
801
812
.
3.
Huang
,
D.
,
Chang
,
T. R.
,
Aggarwal
,
A.
,
Lee
,
R. C.
, and
Ehrlich
,
H. P.
,
1993
, “
Mechanisms and Dynamics of Mechanical Strengthening in Ligament-Equivalent Fibroblast-Populated Collagen Matrices
,”
Ann. Biomed. Eng.
,
21
, pp.
289
305
.
4.
Seliktar
,
D.
,
Black
,
R. A.
,
Vito
,
R. P.
, and
Nerem
,
R. M.
,
2000
, “
Dynamic Mechanical Conditioning of Collagen-Gel Blood Vessel Constructs Induces Remodeling In Vitro
,”
Ann. Biomed. Eng.
,
28
, pp.
351
362
.
5.
Butler
,
D. L.
,
Goldstein
,
S. A.
, and
Guilak
,
F.
,
2000
, “
Functional Tissue Engineering: The Role of Biomechanics
,”
J. Biomech. Eng.
,
122
, pp.
570
575
.
6.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, pp. 41, 46, 262–263, 270–272, 301.
7.
Fung
,
Y. C.
,
Fronek
,
K.
, and
Patitucci
,
P.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of its Mathematical Expression
,”
Am. J. Physiol.
,
237
, pp.
H620–H631
H620–H631
.
8.
Emery
,
J. L.
,
Omens
,
J. H.
, and
McCulloch
,
A. D.
,
1997
, “
Strain Softening in the Rat Left Ventricular Myocardium
,”
J. Biomech. Eng.
,
119
, pp.
6
12
.
9.
Gregersen
,
H.
,
Emery
,
J. L.
, and
McCulloch
,
A. D.
,
1998
, “
History-Dependent Mechanical Behavior of Guinea-Pig Small Intestine
,”
Ann. Biomed. Eng.
,
26
, pp.
850
858
.
10.
Wakatsuki
,
T.
,
Kolodney
,
M. S.
,
Zahalak
,
G. I.
, and
Elson
,
E. L.
,
2000
, “
Cell Mechanics Studied by a Reconstituted Model Tissue
,”
Biophys. J.
,
79
, pp.
2353
2368
.
11.
Zahalak
,
G.
,
Wagenseil
,
J.
,
Wakatsuki
,
T.
, and
Elson
,
E.
,
2000
, “
A Cell-Based Constitutive Relation for Bio-Artificial Tissues
,”
Biophys. J.
,
79
, pp.
2369
2381
.
12.
Girton
,
T. S.
,
Oegema
,
T. R.
, and
Tranquillo
,
R. T.
,
1999
, “
Exploiting Glycation to Stiffen and Strengthen Tissue Equivalents for Tissue Engineering
,”
J. Biomed. Mater. Res.
,
46
, pp.
87
92
.
13.
Vawter
,
D. L.
,
Fung
,
Y. C.
, and
West
,
J. B.
,
1978
, “
Elasticity of Excised Dog Lung Parenchyma
,”
J. Appl. Physiol.
,
45
, pp.
261
269
.
14.
McElhaney
,
J. H.
,
1966
, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
,
21
, pp.
1231
1236
.
15.
Pinto
,
J. G.
, and
Fung
,
Y. C.
,
1973
, “
Mechanical Properties of the Heart Muscle in the Passive State
,”
J. Biomech.
,
6
, pp.
597
616
.
16.
Kang
,
T.
,
Resar
,
J.
, and
Humphrey
,
J. D.
,
1995
, “
Heat-Induced Changes in the Mechanical Behavior of Passive Coronary Arteries
,”
ASME J. Biomech. Eng.
,
117
, pp.
86
93
.
17.
May-Newman
,
K.
, and
Yin
,
F. C. P.
,
1995
, “
Biaxial Mechanical Behavior of Excised Porcine Mitral Valve Leaflets
,”
Am. J. Physiol.
,
269
, pp.
H1319–H1327
H1319–H1327
.
18.
Takamizawa
,
K.
, and
Hayashi
,
K.
,
1987
, “
Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,”
J. Biomech.
,
20
, pp.
7
17
.
19.
Johnson
,
M.
, and
Beatty
,
M.
,
1993
, “
The Mullins Effect in Uniaxial Extension and its Influence on the Transverse Vibration of a Rubber String
,”
Continuum Mech. Thermodyn.
,
5
, pp.
83
115
.
20.
Kolodney
,
M. S.
, and
Elson
,
E. L.
,
1993
, “
Correlation of Myosin Light Chain Phosphorylation With Isometric Contraction of Fibroblasts
,”
J. Biol. Chem.
,
268
, pp.
23850
23855
.
21.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
,
2002
, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite-Element Analysis
,”
European Journal of Mechanics a-Solids
,
21
, pp.
441
463
.
22.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
1997
, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance
,”
ASME J. Biomech. Eng.
,
119
, pp.
137
145
.
23.
Ozerdem
,
B.
, and
Tozeren
,
A.
,
1995
, “
Physical Response of Collagen Gels to Tensile Strain
,”
J. Biomech. Eng.
,
117
, pp.
397
401
.
24.
Roeder
,
B. A.
,
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
,
2002
, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
J. Biomech. Eng.
,
124
, pp.
214
222
.
25.
Tower
,
T. T.
,
Neidert
,
M. R.
, and
Tranquillo
,
R. T.
,
2002
, “
Fiber Alignment Imaging During Mechanical Testing of Soft Tissues
,”
Ann. Biomed. Eng.
,
30
, pp.
1221
1233
.
26.
Eastwood
,
M.
,
Porter
,
R.
,
Khan
,
U.
,
McGrouther
,
G.
, and
Brown
,
R.
,
1996
, “
Quantitative Analysis of Collagen Gel Contractile Forces Generated by Dermal Fibroblast and the Relationship to Cell Morphology
,”
J. Cell Physiol.
,
166
, pp.
33
42
.
27.
Eastwood
,
M.
,
McGrouther
,
D. A.
, and
Brown
,
R. A.
,
1994
, “
A Culture Force Monitor for Measurement of Contraction Forces Generated in Human Dermal Fibroblast Cultures: Evidence for Cell-Matrix Mechanical Signalling
,”
Biochim. Biophys. Acta
,
1201
, pp.
186
192
.
You do not currently have access to this content.