Recent in-vivo and in-vitro evidence indicates that fluid shear stress on the membrane of leukocytes has a powerful control over several aspects of their cell function. This evidence raises a question about the magnitude of the fluid shear stress on leukocytes in the circulation. The flow of plasma on the surface of a leukocyte at a very low Reynolds number is governed by the Stokes equation for the motion of a Newtonian fluid. We numerically estimated the distribution of fluid shear stress on a leukocyte membrane in a microvessel for the cases when the leukocyte is freely suspended, as well as rolling along or attached to a microvessel wall. The results indicate that the fluid shear stress distribution on the leukocyte membrane is nonuniform with a sharp increase when the leukocyte makes membrane attachment to the microvessel wall. In a microvessel (10 μm diameter), the fluid shear stress on the membrane of a freely suspended leukocyte (8 μm diameter) is estimated to be several times larger than the wall shear stress exerted by the undisturbed Poiseuille flow, and increases on an adherent leukocyte up to ten times. High temporal stress gradients are present in freely suspended leukocytes in shear flow due to cell rotation, which are proportional to the local shear rate. In comparison, the temporal stress gradients are reduced on the membrane of leukocytes that are rolling or firmly adhered to the endothelium. High temporal gradients of shear stress are also present on the endothelial wall. At a plasma viscosity of 1 cPoise, the peak shear stresses for suspended and adherent leukocytes are of the order of 10 dyn/cm2 and 100 dyn/cm2, respectively.

1.
Helmke
,
B. P.
,
Sugihara-Seki
,
M.
,
Skalak
,
R.
, and
Schmid-Scho¨nbein
,
G. W.
,
1998
, “
A Mechanism for Erythrocyte-Mediated Elevation of Apparent Viscosity by Leukocytes In-Vivo Without Adhesion to the Endothelium
,”
Biorheology
,
35
, pp.
437
448
.
2.
Harris
,
A. G.
, and
Skalak
,
T. C.
,
1993
, “
Effects of Leukocyte Activation on Capillary Hemodynamics in Skeletal Muscle
,”
Am. J. Physiol.
,
264
, pp.
H909–H916
H909–H916
.
3.
Moazzam
,
F.
,
DeLano
,
F. A.
,
Zweifach
,
B. W.
, and
Schmid-Scho¨nbein
,
G. W.
,
1997
, “
The Leukocyte Response to Fluid Stress
,”
Proc. Natl. Acad. Sci. U.S.A.
,
94
, pp.
5338
5343
.
4.
Fukuda
,
S.
, and
Schmid-Scho¨nbein
,
G. W.
,
2000
, “
Regulation of CD18 Expression on Neutrophils in Response to Fluid Shear Stress
,”
FASEB J.
,
14
, p.
A1
A1
.
5.
Dewitz
,
T. S.
,
Hung
,
T. C.
,
Martin
,
R. R.
, and
McIntire
,
L. V.
,
1977
, “
Mechanical Trauma in Leukocytes
,”
J. Lab. Clin. Med.
,
90
, pp.
728
736
.
6.
Kitayama
,
J.
,
Hidemura
,
A.
,
Saito
,
H.
, and
Nagawa
,
H.
,
2000
, “
Shear Stress Affects Migration Behavior of Polymorphonuclear Cells Arrested on Endothelium
,”
Cell. Immunol.
,
203
, pp.
39
46
.
7.
Rainger
,
G. E.
,
Buckley
,
C. D.
,
Simmons
,
D. L.
, and
Nash
,
G. B.
,
1999
, “
Neutrophils Sense Flow-Generated Stress and Direct Their Migration Through αvβ3-Integrin
,”
Am. J. Physiol.
,
276
, pp.
H858–H864
H858–H864
.
8.
Cinamon
,
G.
,
Shinder
,
V.
, and
Alon
,
R.
,
2001
, “
Shear Forces Promote Lymphocyte Migration Across Vascular Endothelium Bearing Apical Chemokines
,”
Nat. Immun.
,
2
, pp.
515
522
.
9.
Schmid-Scho¨nbein
,
G. W.
,
Usami
,
S.
,
Skalak
,
R.
, and
Chien
,
S.
,
1980
, “
The Interaction of Leukocytes and Erythrocytes in Capillary and Postcapillary Vessels
,”
Microvasc. Res.
,
19
, pp.
45
70
.
10.
Melder
,
R. J.
,
Munn
,
L. L.
,
Yamada
,
S.
,
Ohkubo
,
C.
, and
Jain
,
R. K.
,
1995
, “
Selectin- and Integrin-Mediated T-Lymphocyte Rolling and Arrest on TNF-α-Activated Endothelium: Augmentation by Erythrocytes
,”
Biophys. J.
,
69
, pp.
2131
2138
.
11.
Munn
,
L. L.
,
Melder
,
R. J.
, and
Jain
,
R. K.
,
1996
, “
Role of Erythrocytes in Leukocyte-Endothelial Interactions: Mathematical Model and Experimental Validation
,”
Biophys. J.
,
71
, pp.
466
478
.
12.
King
,
M. R.
, and
Hammer
,
D. A.
,
2001
, “
Multiparticle Adhesive Dynamics: Hydrodynamic Recruitment of Rolling Leukocytes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
98
, pp.
14919
14924
.
13.
Goldman
,
A. J.
,
Cox
,
R. G.
, and
Brenner
,
H.
,
1967
, “
Slow Viscous Motion of a Sphere Parallel to a Plane Wall-II Couette Flow
,”
Chem. Eng. Sci.
,
22
, pp.
653
660
.
14.
Pozrikidis
,
C.
,
2000
, “
Effect of Pressure Gradient on Viscous Shear Flow Past an Axisymmetric Depression or Protuberance on a Plane Wall
,”
Comput. Fluids
,
29
, pp.
617
637
.
15.
Brooks
,
S. B.
, and
To¨zeren
,
A.
,
1996
, “
Flow Past an Array of Cells That are Adherent to the Bottom Plate of a Flow Channel
,”
Comput. Fluids
,
25
, pp.
741
757
.
16.
Sugihara-Seki
,
M.
,
2001
, “
Flow Around Cells Adhered to a Microvessel Wall. III. Effects of Neighboring Cells in Channel Flow
,”
JSME Int. J. Ser., C
,
44
, pp.
990
995
.
17.
Dong
,
C.
,
Cao
,
J.
,
Struble
,
E. J.
, and
Lipowsky
,
H. H.
,
1999
, “
Mechanics of Leukocyte Deformation and Adhesion to Endothelium in Shear Flow
,”
Ann. Biomed. Eng.
,
27
, pp.
298
312
.
18.
Dong
,
C.
, and
Lei
,
X. X.
,
2000
, “
Biomechanics of Cell Rolling: Shear Flow, Cell-Surface Adhesion, and Cell Deformability
,”
J. Biomech.
,
33
, pp.
35
43
.
19.
Chapman
,
G.
, and
Cokelet
,
G.
,
1996
, “
Model Studies of Leukocyte-Endothelium-Blood Interactions. I. The Fluid Flow Drag Force on the Adherent Leukocyte
,”
Biorheology
,
33
, pp.
119
138
.
20.
Chapman
,
G.
, and
Cokelet
,
G.
,
1997
, “
Model Studies of Leukocyte-Endothelium-Blood Interactions. II. Hemodynamic Impact of Leukocytes Adherent to the Wall of Post-Capillary Vessels
,”
Biorheology
,
34
, pp.
37
56
.
21.
Sugihara-Seki
,
M.
,
2000
, “
Flow Around Cells Adhered to a Microvessel Wall. I. Fluid Stresses and Forces Acting on the Cells
,”
Biorheology
,
37
, pp.
341
359
.
22.
Sugihara-Seki
,
M.
,
2001
, “
Flow around Cells Adhered to a Microvessel Wall. II. Comparison to Flow around Adherent Cells in Channel Flow
,”
Biorheology
,
38
, pp.
3
13
.
23.
Sugihara-Seki
,
M.
,
1996
, “
The Motion of an Ellipsoid in Tube Flow at Low Reynolds Numbers
,”
J. Fluid Mech.
,
324
, pp.
287
308
.
24.
Wang
,
H.
, and
Skalak
,
R.
,
1969
, “
Viscous Flow in a Cylindrical Tube Containing a Line of Spherical Particles
,”
J. Fluid Mech.
,
38
, pp.
75
96
.
25.
Davies
,
P. F.
,
1995
, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
,
75
, pp.
519
560
.
26.
DePaola
,
N.
,
Gimbrone
, Jr.,
M. A.
,
Davies
,
P. F.
, and
Dewey
, Jr.,
C. F.
,
1992
, “
Vascular Endothelium Responds to Fluid Shear Stress Gradients
,”
Arterioscler. Thromb.
,
12
, pp.
1254
1257
.
27.
Davies
,
P. F.
,
Mundel
,
T.
, and
Barbee
,
K. A.
,
1995
, “
A Mechanism for Heterogeneous Endothelial Responses to Flow In Vivo and In Vitro
,”
J. Biomech.
,
28
, pp.
1553
1560
.
28.
Goldsmith
,
H. L.
, and
Spain
,
S.
,
1984
, “
Radial Distribution of White Cells in Tube Flow
,”
Kroc. Found. Ser.
,
16
, pp.
131
146
.
29.
Fukuda
,
S.
,
Yasu
,
T.
,
Predescu
,
D. N.
, and
Schmid-Scho¨nbein
,
G. W.
,
2000
, “
Mechanisms for Regulation of Fluid Shear Stress Response in Circulating Leukocytes
,”
Circ. Res., (UltraRapid Communication)
86
, pp.
E13–E18
E13–E18
.
30.
Marschel
,
P.
, and
Schmid-Scho¨nbein
,
G. W.
,
2002
, “
Control of Fluid Shear Response in Circulating Leukocytes by Integrins
,”
Ann. Biomed. Eng.
,
30
, pp.
333
343
.
31.
Batchelor, G. K., 1967, An Introduction to Fluid Dynamics, Cambridge University Press.
32.
Lipowsky, H. H., 1995, “Shear Stress in the Circulation,” In: Flow-Dependent Regulation of Vascular Function, Bevan, J. A., Kaley, G., and Rubanyi, G. M., eds., Oxford University Press, pp. 28–45.
33.
Schmid-Scho¨nbein
,
G. W.
,
Shih
,
Y. Y.
, and
Chien
,
S.
,
1980
, “
Morphometry of Human Leukocytes
,”
Blood
,
56
, pp.
866
875
.
34.
Schmid-Scho¨nbein
,
G. W.
, and
Murakami
,
H.
,
1985
, “
Blood Flow in Contracting Arterioles
,”
Int. J. Microcirc.: Clin. Exp.
,
4
, pp.
311
328
.
35.
Reich
,
K. M.
,
Gay
,
C. V.
, and
Frangos
,
J. A.
,
1990
, “
Fluid Shear Stress as a Mediator of Osteoblast Cyclic Adenosine Monophosphate Production
,”
J. Cell Physiol.
,
143
, pp.
100
104
.
36.
McAllister
,
T. N.
, and
Frangos
,
J. A.
,
1999
, “
Steady and Transient Fluid Shear Stress Stimulate NO Release in Osteoblasts Through Distinct Biochemical Pathways
,”
J. Bone Miner. Res.
,
14
, pp.
930
936
.
37.
Bao
,
X.
,
Lu
,
C.
, and
Frangos
,
J. A.
,
1999
, “
Temporal Gradient in Shear but Not Steady Shear Stress Induces PDGF-A and MCP-1 Expression in Endothelial Cells: Role of NO, NFκB, and egr-1
,”
Arterioscler. Thromb. Vasc. Biol.
,
19
, pp.
996
1003
.
You do not currently have access to this content.