To optimize the mechanical properties and integrity of tissue-engineered aortic heart valves, it is necessary to gain insight into the effects of mechanical stimuli on the mechanical behavior of the tissue using mathematical models. In this study, a finite-element (FE) model is presented to relate changes in collagen fiber content and orientation to the mechanical loading condition within the engineered construct. We hypothesized that collagen fibers aligned with principal strain directions and that collagen content increased with the fiber stretch. The results indicate that the computed preferred fiber directions run from commissure to commissure and show a strong resemblance to experimental data from native aortic heart valves.

1.
Schoen
,
F. J.
, and
Levy
,
R. J.
,
1999
, “
Tissue Heart Valves: Current Challenges and Future Research Perspectives
,”
J. Biomed. Mater. Res.
,
47
(
4
), pp.
439
465
.
2.
Sodian
,
R.
,
Hoerstrup
,
S. P.
,
Sperling
,
J. S.
,
Daebritz
,
S.
,
Martin
,
D. P.
,
Moran
,
A. M.
,
Kim
,
B. S.
,
Schoen
,
F. J.
,
Vacanti
,
J. P.
, and
Mayer
, Jr.,
J. E.
,
2000
, “
Early in vivo Experience With Tissue-Engineered Trileaflet Heart Valves
,”
Circulation
,
102
(
19
), pp.
III22–III29
III22–III29
.
3.
Hoerstrup
,
S. P.
,
Sodian
,
R.
,
Daebritz
,
S.
,
Wang
,
J.
,
Bacha
,
E. A.
,
Martin
,
D. P.
,
Moran
,
A. M.
,
Guleserian
,
K. J.
,
Sperling
,
J. S.
,
Kaushal
,
S.
,
Vacanti
,
J. P.
,
Schoen
,
F. J.
, and
Mayer
, Jr.,
J. E.
,
2000
, “
Functional Living Trileaflet Heart Valves Grown in vitro
,”
Circulation
,
102
(
19
), pp.
III44–III49
III44–III49
.
4.
Sodian
,
R.
,
Hoerstrup
,
S. P.
,
Sperling
,
J. S.
,
Daebritz
,
S.
,
Martin
,
D. P.
,
Schoen
,
F. J.
,
Vacanti
,
J. P.
, and
Mayer
, Jr.,
J. E.
,
2000
, “
Tissue Engineering of Heart Valves: in vitro Experiences
,”
Ann. Thorac. Surg.
,
70
(
1
), pp.
140
144
.
5.
Sauren, A. A. H. J., 1981, “The Mechanical Behavior of the Aortic Valve,” Ph.D. thesis, Technische Hogeschool Eindhoven.
6.
Guidry
,
C.
, and
Grinnell
,
F.
,
1985
, “
Studies on the Mechanism of Hydrated Collagen Gel Reorganization by Human Skin Fibroblasts
,”
J. Cell. Sci.
,
79
, pp.
67
81
.
7.
Rubin, E., and Farber, J. L., 1998, Pathology, Lippincott-Raven, Philadelphia.
8.
Christie, G. W., and Medland, I. C., 1982, “A Non-Linear Finite Element Stress Analysis of Bioprosthetic Heart Valves,” In: Gallagher, R. H., Simon, B. R., Johnson, P. C., and Gross, J. F., (eds.), Finite Elements in Biomechanics, Wiley, Chichester, pp. 153–179.
9.
Li
,
J.
,
Luo
,
X. Y.
, and
Kuang
,
Z. B.
,
2001
, “
A Nonlinear Anisotropic Model for Porcine Aortic Heart Valves
,”
J. Biomech.
,
34
(
10
), pp.
1279
1289
.
10.
Peskin
,
C. S.
, and
McQueen
,
D. M.
,
1994
, “
Mechanical Equilibrium Determines the Fractal Fiber Architecture of Aortic Heart Valve Leaflets
,”
Am. J. Physiol.
,
266
(
1
), pp.
H319–H328
H319–H328
.
11.
Cowin
,
S. C.
,
1986
, “
Wolff’s Law of Trabecular Architecture at Remodeling Equilibrium
,”
J. Biomech. Eng.
,
108
(
1
), pp.
83
88
.
12.
Cowin
,
S. C.
,
Sadegh
,
A. M.
, and
Luo
,
G. M.
,
1992
, “
An Evolutionary Wolff’s Law for Trabecular Architecture
,”
J. Biomech. Eng.
,
114
(
1
), pp.
129
136
.
13.
Dallon
,
J. C.
, and
Sherratt
,
J. A.
,
1998
, “
A Mathematical Model for Fibroblast and Collagen Orientation
,”
Bull. Math. Biol.
,
60
(
1
), pp.
101
129
.
14.
Dallon
,
J. C.
,
Sherratt
,
J. A.
, and
Maini
,
P. K.
,
1999
, “
Mathematical Modelling of Extracellular Matrix Dynamics Using Discrete Cells: Fiber Orientation and Tissue Regeneration
,”
J. Theor. Biol.
,
199
(
4
), pp.
449
471
.
15.
Dallon
,
J.
,
Sherratt
,
J.
,
Maini
,
P.
, and
Ferguson
,
M.
,
2000
, “
Biological Implications of a Discrete Mathematical Model for Collagen Deposition and Alignment in Dermal Wound Repair
,”
IMA J. Math. Appl. Med. Biol.
,
17
(
4
), pp.
379
393
.
16.
Olsen
,
L.
,
Maini
,
P. K.
,
Sherratt
,
J. A.
, and
Dallon
,
J. C.
,
1999
, “
Mathematical Modelling of Anisotropy in Fibrous Connective Tissue
,”
Math. Biosci.
,
158
(
2
), pp.
145
170
.
17.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
1997
, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment and Cell Contact Guidance
,”
J. Biomech. Eng.
,
119
(
2
), pp.
137
145
.
18.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
1997
, “
A Finite Element Solution for the Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Effect of Contact Guidance on Isometric Cell Traction Measurement
,”
J. Biomech. Eng.
,
119
(
3
), pp.
261
268
.
19.
van Oijen, C. H. G. A., van de Vosse, F. N., and Baaijens, F. P. T., 2002, “An Updated Lagrange Formulation of A Constitutive Model for Incompressible Composite Materials at Finite Strains,” submitted to Computer Methods in Applied Mechanics and Engineering.
20.
Carew
,
E. O.
,
Barber
,
J. E.
, and
Vesely
,
I.
,
2000
, “
Role of Preconditioning and Recovery Time in Repeated Testing of Aortic Valve Tissues: Validation Through Quasilinear Viscoelastic Theory
,”
Ann. Biomed. Eng.
,
28
(
9
), pp.
1093
1100
.
21.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part II: A Structural Constitutive Model
,”
J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.
22.
Bathe, K. J., 1996, Finite Element Procedures, Prentice Hall, Englewood Cliffs, NJ.
23.
Segal, A., 1984, SEPRAN User Manual, Standard Problems and Programmers Guide, Ingenieursbureau SEPRA, Leidschendam, the Netherlands.
24.
MacKenna
,
D.
,
Summerour
,
S. R.
, and
Villarreal
,
F. J.
,
2000
, “
Role of Mechanical Factors in Modulating Cardiac Fibroblast Function and Extracellular Matrix Synthesis
,”
Cardiovasc. Res.
,
46
(
2
), pp.
257
263
.
25.
Kolpakov
,
V.
,
Rekhter
,
M. D.
,
Gordon
,
D.
,
Wang
,
W. H.
, and
Kulik
,
T. J.
,
1995
, “
Effect of Mechanical Forces on Growth and Matrix Protein Synthesis in the in vitro Pulmonary Artery. Analysis of the Role of Individual Cell Types
,”
Circ. Res.
,
77
(
4
), pp.
823
831
.
26.
Kim
,
B. S.
,
Nikolovski
,
J.
,
Bonadio
,
J.
, and
Mooney
,
D. J.
,
1999
, “
Cyclic Mechanical Strain Regulates the Development of Engineered Smooth Muscle Tissue
,”
Nat. Biotechnol.
,
17
(
10
), pp.
979
983
.
27.
Torbet
,
J.
, and
Ronzie`re
,
M. C.
,
1984
, “
Magnetic Alignment of Collagen During Self-Assembly
,”
Biochem. J.
,
219
(
3
), pp.
1057
1059
.
28.
Dubey
,
N.
,
Letourneau
,
P. C.
, and
Tranquillo
,
R. T.
,
2001
, “
Neuronal Contact Guidance in Magnetically Aligned Fibrin Gels: Effect of Variation in Gel Mechano-Structural Properties
,”
Biomaterials
,
22
(
10
), pp.
1065
1075
.
29.
Streuli
,
C.
,
1999
, “
Extracellular Matrix Remodelling and Cellular Differentiation
,”
Curr. Opin. Cell Biol.
,
11
(
5
), pp.
634
640
.
30.
Thubrikar, M. J., 1990, The Aortic Valve, CRC Press, Boca Raton.
31.
Vesely
,
I.
, and
Noseworthy
,
R.
,
1992
, “
Micromechanics of the Fibrosa and the Ventricularis in Aortic Valve Leaflets
,”
J. Biomech.
,
25
(
1
), pp.
101
113
.
32.
Thubrikar
,
M. J.
,
Aouad
,
J.
, and
Nolan
,
S. P.
,
1986
, “
Comparison of the in vivo and in vitro Mechanical Properties of Aortic Valve Leaflets
,”
J. Thorac. Cardiovasc. Surg.
,
92
(
1
), pp.
29
36
.
33.
de Hart, J., 2002, “Fluid-Structure Interaction in the Aortic Heart Valve: A Three-Dimensional Computational Analysis,” Ph.D. thesis, Technische Universiteit Eindhoven.
34.
Clark
,
R. E.
, and
Finke´
,
E. H.
,
1974
, “
Scanning and Light Microscopy of Human Aortic Leaflets in Stressed and Relaxed States
,”
J. Thorac. Cardiovasc. Surg.
,
67
(
5
), pp.
792
804
.
35.
Sacks
,
M. S.
,
Smith
,
D. B.
, and
Hiester
,
E. D.
,
1997
, “
A Small Angle Light Scattering Device for Planar Connective Tissue Microstructural Analysis
,”
Ann. Biomed. Eng.
,
25
(
4
), pp.
678
689
.
36.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results
,”
J. Biomech. Eng.
,
122
(
1
), pp.
23
30
.
37.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
1997
, “
A Method to Quantify Fiber Kinematics of Planar Tissues Under Biaxial Stretch
,”
J. Biomech.
,
30
(
7
), pp.
753
756
.
38.
Scott
,
M. J.
, and
Vesely
,
I.
,
1995
, “
Aortic Valve Cusp Microstructure: The Role of Elastin
,”
Ann. Thorac. Surg.
,
60
(
2
), pp.
S391–S394
S391–S394
.
39.
Scott
,
M. J.
, and
Vesely
,
I.
,
1996
, “
Morphology of Porcine Aortic Valve Cusp Elastin
,”
J. Heart Valve Dis.
,
5
(
5
), pp.
464
471
.
40.
Lee
,
T. C.
,
Midura
,
R. J.
,
Hascall
,
V. C.
, and
Vesely
,
I.
,
2001
, “
The Effect of Elastin Damage on the Mechanics of the Aortic Valve
,”
J. Biomech.
,
34
(
2
), pp.
203
210
.
41.
de Hart
,
J.
,
Peters
,
G. W. M.
,
Schreurs
,
P. J. G.
, and
Baaijens
,
F. P. T.
,
2000
, “
A Two-Dimensional Fluid-Structure Interaction Model of the Aortic Valve
,”
J. Biomech.
,
33
(
9
), pp.
1079
1088
.
42.
Vesely
,
I.
,
1996
, “
Reconstruction of Loads in the Fibrosa and Ventricularis of Porcine Aortic Valves
,”
ASAIO J.
,
42
(
5
), pp.
M739–M746
M739–M746
.
43.
Carver
,
W.
,
Nagpal
,
M. L.
,
Nachtigal
,
M.
,
Borg
,
T. K.
, and
Terracio
,
L.
,
1991
, “
Collagen Expression in Mechanically Stimulated Cardiac Fibroblasts
,”
Circ. Res.
,
69
(
1
), pp.
116
122
.
44.
Lee
,
A. A.
,
Delhaas
,
T.
,
McCulloch
,
A. D.
, and
Villarreal
,
F. J.
,
1999
, “
Differential Responses of Adult Cardiac Fibroblasts to in vitro Biaxial Strain Patterns
,”
J. Mol. Cell. Cardiol.
,
31
(
10
), pp.
1833
1843
.
45.
Villarreal
,
F. J.
, and
Dillmann
,
W. H.
,
1992
, “
Cardiac Hypertrophy-Induced Changes in mRNA Levels for TGF-Beta 1, Fibronectin, and Collagen
,”
Am. J. Physiol.
,
262
(
6
), pp.
H1861–H1866
H1861–H1866
.
46.
Doillon
,
C. J.
,
Dunn
,
M. G.
,
Bender
,
E.
, and
Silver
,
F. H.
,
1985
, “
Collagen Fiber Formation in Repair Tissue: Development of Strength and Toughness
,”
Coll. Relat. Res.
,
5
(
6
), pp.
481
492
.
You do not currently have access to this content.