Utilization of novel biologically-derived biomaterials in bioprosthetic heart valves (BHV) requires robust constitutive models to predict the mechanical behavior under generalized loading states. Thus, it is necessary to perform rigorous experimentation involving all functional deformations to obtain both the form and material constants of a strain-energy density function. In this study, we generated a comprehensive experimental biaxial mechanical dataset that included high in-plane shear stresses using glutaraldehyde treated bovine pericardium (GLBP) as the representative BHV biomaterial. Compared to our previous study (Sacks, JBME, v.121, pp. 551–555, 1999), GLBP demonstrated a substantially different response under high shear strains. This finding was underscored by the inability of the standard Fung model, applied successfully in our previous GLBP study, to fit the high-shear data. To develop an appropriate constitutive model, we utilized an interpolation technique for the pseudo-elastic response to guide modification of the final model form. An eight parameter modified Fung model utilizing additional quartic terms was developed, which fitted the complete dataset well. Model parameters were also constrained to satisfy physical plausibility of the strain energy function. The results of this study underscore the limited predictive ability of current soft tissue models, and the need to collect experimental data for soft tissue simulations over the complete functional range.

1.
Aupart
,
M.
,
Babuty
,
D.
,
Guesnier
,
L.
,
Meurisse
,
Y.
,
Sirinelli
,
A.
, and
Marchand
,
M.
,
1996
, “
Double Valve Replacement With the Carpentier-Edwards Pericardial Valve: 10 Year Results
,”
J. Heart Valve Dis.
,
5
, pp.
312
316
.
2.
Cosgrove
,
D.
,
1996
, “
Carpentier Pericardial Valve
,”
Semin Thorac. Cardiovasc. Surg.
,
8
(
3
), pp.
269
275
.
3.
Frater
,
R.
,
Furlong
,
P.
,
Cosgrove
,
D.
,
Okies
,
J.
,
Colburn
,
L.
,
Katz
,
A.
,
Lowe
,
N.
, and
Ryba
,
E.
,
1998
, “
Long-term Durability and Patient Functional Status of the Carpentier-Edwards Perimount Pericardial Bioprosthesis in the Aortic Position
,”
J. Heart Valve Dis.
,
7
, pp.
48
53
.
4.
Grunkemeier
,
G.
, and
Bodnar
,
E.
,
1995
, “
Comparative Assessment of Bioprosthesis Durability in the Aortic Position
,”
J. Heart Valve Dis.
,
4
, pp.
49
55
.
5.
Pelletier
,
L.
,
Carrier
,
M.
,
Leclerc
,
Y.
, and
Dyrda
,
I.
,
1995
, “
The Carpentier-Edwards Pericardial Bioprosthesis: Clinical Experience with 600 Patients
,”
Ann. Thorac. Surg.
,
60
, pp.
297
302
.
6.
Schoen
,
F.
, and
Levy
,
R.
,
1994
, “
Pathology of Substitute Heart Valves
,”
J. Card. Surg.
,
9
, pp.
222
227
.
7.
Schoen, F. J., and Levy, R. J., 1991, “Calcification of Bioprosthetic Heart Valves,” Replacement Cardiac Valves, E. Bodnar and R. W. M. Frater, Eds., Pergamon Press, Inc., New York, pp. 125–148.
8.
Ferrans, V. J., Hilbert, S. L., Fujita, S., Jones, M., and Roberts, W. C., 1991, “Morphologic Abnormalities in Explanted Bioprosthetic Heart Valves,” Cardiovascular Pathology, R. Virmani, J. Atkinson, and J. Fenoglio, Eds., W. B. Saunders, Philadelphia, pp. 373–398.
9.
Harasaki
,
H.
,
Baker
,
M.
, and
Zona
,
D.
,
1990
, “
Cross-linking Agents, Degree of Crosslinkage and Calcifiability in Bioprosthetic Heart Valves
,”
Transactions of the Society for Biomaterials (abstract)
,
13
, pp.
25
25
.
10.
Pereira
,
C. A.
,
Lee
,
J. M.
, and
Haberer
,
S. A.
,
1990
, “
Effect of Alternative Crosslinking Methods on the Low Strain Rate Viscoelastic Properties of Bovine Pericardial Bioprosthetic Material
,”
J. Biomed. Mater. Res.
,
24
, pp.
345
361
.
11.
Petite
,
H.
,
Rault
,
I.
,
Huc
,
A.
,
Menasche
,
P.
, and
Herbage
,
D.
,
1990
, “
Use of Acyl Azide Method for Cross-linking Collagen Rich Tissues Such as Pericardium
,”
J. Biomed. Mater. Res.
,
24
, pp.
179
187
.
12.
Vasudev
,
S.
, and
Chandy
,
T.
,
1997
, “
Effect of Alternative Crosslinking Techniques on the Enzymatic Degradation of Bovine Pericardia and Their Calcification
,”
J. Biomed. Mater. Res.
,
35
, pp.
357
369
.
13.
Bengtsson
,
L.
,
Phillips
,
R.
, and
Haegerstrand
,
A.
,
1995
, “
In-Vitro Endothelialization of Photooxidatively Stabilized Xenogenic Pericardium
,”
Ann. Thorac. Surg.
,
60
, pp.
S365–S368
S365–S368
.
14.
Moore
,
M.
,
Bohachevsky
,
I.
,
Cheung
,
D.
,
Boyan
,
B.
,
Chen
,
W.
,
Bickers
,
R.
, and
McIlroy
,
B.
,
1994
, “
Stabilization of Pericardial Tissue by Dye-Mediated Photooxidation
,”
J. Biomed. Mater. Res.
,
28
, pp.
611
618
.
15.
Moore
,
M.
,
Chen
,
W.
,
Phillips
,
R.
,
Bohachevsky
,
I.
, and
McIlroy
,
B.
,
1996
, “
Shrinkage Temperature versus Protein Extraction as a Measure of Stabilization of Photooxidized Tissue
,”
J. Biomed. Mater. Res.
,
32
, pp.
209
214
.
16.
Moore
,
M.
,
McIlroy
,
B.
, and
Phillips
,
R.
,
1997
, “
Nonaldehyde Sterilization of Biologic Tissue for Use in Implantable Medical Devices
,”
ASAIO J.
,
43
, pp.
23
30
.
17.
Schoen
,
F.
,
1998
, “
Pathological Findings in Explanted Clinical Bioprosthetic Valves Fabricated from Photooxidized Bovine Pericardium
,”
J. Heart Valve Dis.
,
7
, pp.
174
179
.
18.
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Evaluation of Planar Biological Materials
,”
J. Elast.
,
61
, pp.
199
246
.
19.
Sacks
,
M. S.
, and
Chuong
,
C. J.
,
1998
, “
Orthotropic Mechanical Properties of Chemically Treated Bovine Pericardium
,”
Ann. Biomed. Eng.
,
26
(
5
), pp.
892
902
.
20.
Langdon
,
S. E.
,
Chernecky
,
R.
,
Pereira
,
C. A.
,
Abdulla
,
D.
, and
Lee
,
J. M.
,
1999
, “
Biaxial Mechanical/Structural Effects of Equibiaxial Strain during Crosslinking of Bovine Pericardial Xenograft Materials
,”
Biomaterials
,
20
(
2
), pp.
137
153
.
21.
Sacks
,
M. S.
,
1999
, “
A Method for Planar Biaxial Mechanical Testing That Includes In-plane Shear
,”
ASME J. Biomech. Eng.
,
121
(
5
), pp.
551
555
.
22.
Sacks
,
M. S.
,
2000
, “
A Structural Constitutive Model for Chemically Treated Planar Connective Tissues Under Biaxial Loading
,”
Comp. Mech.
,
26
(
3
), pp.
243
249
.
23.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of Fresh and Glutaraldehyde Treated Porcine Aortic Valve Cusps: Part II-A Structurally Guided Constitutive Model
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.
24.
Sacks, M. S., “A Structural Constitutive Model for Planar Collagenous Tissues That Integrates SALS-derived Fiber Orientation Data,” ASME J. Biomech. Eng., in-press.
25.
Black
,
M. M.
,
Howard
,
I. C.
,
Huang
,
X. C.
, and
Patterson
,
E. A.
,
1991
, “
A Three-dimensional Analysis of a Bioprosthetic Heart Valve
,”
J. Biomech.
,
24
, pp.
793
801
.
26.
Krucinski
,
S.
,
Vesely
,
I.
,
Dokainish
,
M. A.
, and
Campbell
,
G.
,
1993
, “
Numerical Simulation of Leaflet Flexure in Bioprosthetic Valves Mounted on Rigid and Expansile Stents
,”
J. Biomech.
,
26
, pp.
929
943
.
27.
Spencer, A. J. M., 1980, Continuum Mechanics, Longman Scientific & Technical, NY, 183p.
28.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., Springer Verlag, New York, p. 568.
29.
Brossollet
,
L. J.
, and
Vito
,
R. P.
,
1996
, “
A New Approach to Mechanical Testing and Modeling of Biological Tissues, With Application to Blood Vessels
,”
ASME J. Biomech. Eng.
,
118
, (November), pp.
433
439
.
30.
Rousseeuw, P. J., and Leroy, A. M., 1987, Robust Regression and Outlier Detection, Wiley Series in Probability and Mathematical Statistics, Applied Probability and Statistics, Wiley, New York, xiv, 329 p.
31.
Zioupos
,
P.
,
Barbenel
,
J. C.
, and
Fisher
,
J.
,
1994
, “
Anisotropic Elasticity and Strength of Glutaraldehyde Fixed Bovine Pericardium for Use in Pericardial Bioprosthetic Valves
,”
J. Biomed. Mater. Res.
,
28
, pp.
49
57
.
32.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
,
1951
, “
Large Elastic Deformations of Isotropic Materials, VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London, Ser. A
,
A243
, pp.
251
288
.
33.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form
,”
ASME J. Biomech. Eng.
,
112
(
3
), pp.
333
339
.
34.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
,
1992
, “
A Constitutive Theory for Biomembranes: Application to Epicardial Mechanics
,”
ASME J. Biomech. Eng.
,
114
(
4
), pp.
461
446
.
35.
Curnier
,
A.
,
He
,
Q. C.
, and
Zysset
,
P.
,
1995
, “
Conewise Linear Elastic-Materials
,”
J. Elasti.
,
37
(
1
), pp.
1
38
.
36.
Lanir
,
Y.
,
1994
, “
Plausibility of Structural Constitutive Equations for Isotropic Soft Tissues in Finite Static Deformations
,”
ASME J. Appl. Mech.
,
61
, pp.
695
702
.
37.
Lanir
,
Y.
,
1996
, “
Plausibility of Structural Constitutive Equations for Swelling Tissues-Implications of the C-N and S-E Conditions
,”
ASME J. Biomech. Eng.
,
118
, pp.
10
16
.
38.
Truesdell, C., and Noll, W., 1965, “The Nonlinear Field Theories,” Handbuch der Physik, S. Flugge, Ed., Springer-Verlag, Berlin, pp. 119–126.
39.
Marsden, J. E., and Hughes, T. J. R., 1983, Mathematical Foundations of Elasticity, Don Mills, Dover, 556 p.
You do not currently have access to this content.