Quantification of the mechanical behavior of hyperelastic membranes in their service configuration, particularly biological tissues, is often challenging because of the complicated geometry, material heterogeneity, and nonlinear behavior under finite strains. Parameter estimation thus requires sophisticated techniques like the inverse finite element method. These techniques can also become difficult to apply, however, if the domain and boundary conditions are complex (e.g. a non-axisymmetric aneurysm). Quantification can alternatively be achieved by applying the inverse finite element method over sub-domains rather than the entire domain. The advantage of this technique, which is consistent with standard experimental practice, is that one can assume homogeneity of the material behavior as well as of the local stress and strain fields. In this paper, we develop a sub-domain inverse finite element method for characterizing the material properties of inflated hyperelastic membranes, including soft tissues. We illustrate the performance of this method for three different classes of materials: neo-Hookean, Mooney Rivlin, and Fung-exponential.

1.
Kavanaugh
,
K. T.
, and
Clough
,
R. W.
,
1971
, “
Finite Element Applications in the Characterization of Elastic Solids
,”
Int. J. Solids Struct.
,
7
, pp.
11
23
.
2.
Iding
,
R. H.
,
Pister
,
K. S.
, and
Taylor
,
R. L.
,
1974
, “
Identification of Nonlinear Elastic Solids by a Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
4
, pp.
121
142
.
3.
Kyriacou
,
S. K.
,
Shah
,
A. D.
, and
Humphrey
,
J. D.
,
1997
, “
Inverse Finite Element Characterization of Nonlinear Hyperelastic Membranes
,”
J. Appl. Mech.
,
64
, pp.
257
262
.
4.
Humphrey
,
J. D.
,
1998
, “
Computer Methods in Membrane Biomechanics
,”
Computer Methods in Biomechanics and Biomedical Engineering
,
1
, pp.
171
210
.
5.
Twizell
,
E. H.
and
Ogden
,
R. W.
,
1983
, “
Nonlinear Optimization of the Material Constants in Ogden’s Stress-deformation Function for Incompressible Isotropic Elastic Materials
,”
J. Austral. Math. Soc.
,
24
, pp.
424
434
.
6.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
,
1990
, “
Determination of a Constitutive Relation for Passive Myocardium: II. Parameter Estimation
,”
ASME J. Biomech. Eng.
,
112
, pp.
340
346
.
7.
Humphrey, J. D., 2002, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer-Verlag, NY.
8.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
,
1992
, “
A Constitutive Theory for Biomembranes: Application to Epicardium
,”
ASME J. Biomech. Eng.
,
114
, pp.
461
466
.
9.
Hsu
,
F. P. K.
,
Schwab
,
C.
,
Rigamonti
,
D.
, and
Humphrey
,
J. D.
,
1994
, “
Identification of Response Functions for Nonlinear Membranes via Axisymmetric Inflation Tests: Implications for Biomechanics
,”
Int. J. Solids Struct.
,
31
, pp.
3375
3386
.
10.
Oden
,
J. T.
, and
Sato
,
T.
,
1967
, “
Finite Strains and Displacements of Elastic Membranes by the Finite Element Method
,”
Int. J. Solids Struct.
,
3
, pp.
471
488
.
11.
Oden, J. T., 1972, Finite Elements of Nonlinear Continua., McGraw-Hill, NY.
12.
Wriggers
,
P.
, and
Taylor
,
R. L.
,
1990
, “
A Fully Nonlinear Axisymmetrical Membrane Element for Rubber-like Materials
,”
Eng. Comput.
,
7
, pp.
303
310
.
13.
Gruttmann
,
F.
, and
Taylor
,
R. L.
,
1992
, “
Theory and Finite Element Formulation of Rubberlike Membrane Shells Using Principal Stretches
,”
Int. J. Numer. Methods Eng.
,
35
, pp.
1111
1126
.
14.
Kyriacou
,
S. K.
,
Schwab
,
C.
, and
Humphrey
,
J. D.
,
1996
, “
Finite Element Analysis of Nonlinear Orthotropic Hyperelastic Membranes
,”
Computational Mechanics
,
18
, pp.
269
278
.
15.
Hsu
,
F. P. K.
,
Downs
,
J.
,
Liu
,
A. M. C.
,
Rigamonti
,
D.
, and
Humphrey
,
J. D.
,
1995
, “
A Triplane Video-based Experimental System for Studying Axisymmetrically Inflated Biomembranes
,”
IEEE Trans. Biomed. Eng.
,
42
, pp.
442
449
.
16.
Shah
,
A. D.
,
Harris
,
J. L.
,
Kyriacou
,
S. K.
, and
Humphrey
,
J. D.
,
1997
, “
Further Roles of Geometry and Properties in the Mechanics of Saccular Aneurysms
,”
Computer Methods in Biomechanics and Biomedical Engineering
,
1
, pp.
109
121
.
17.
Fried
,
I.
,
1982
, “
Finite Element Computation of Large Rubber Membrane Deformations
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
653
660
.
You do not currently have access to this content.