In articular cartilage, chondrocytes are surrounded by a pericellular matrix (PCM), which together with the chondrocyte have been termed the “chondron.” While the precise function of the PCM is not known there has been considerable speculation that it plays a role in regulating the biomechanical environment of the chondrocyte. In this study, we measured the Young’s modulus of the PCM from normal and osteoarthritic cartilage using the micropipette aspiration technique, coupled with a newly developed axisymmetric elastic layered half-space model of the experimental configuration. Viable, intact chondrons were extracted from human articular cartilage using a new microaspiration-based isolation technique. In normal cartilage, the Young’s modulus of the PCM was similar in chondrons isolated from the surface zone (68.9±18.9 kPa) as compared to the middle and deep layers (62.0±30.5 kPa). However, the mean Young’s modulus of the PCM (pooled for the two zones) was significantly decreased in osteoarthritic cartilage (66.5±23.3 kPa versus 41.3±21.1 kPa, p<0.001). In combination with previous theoretical models of cell-matrix interactions in cartilage, these findings suggest that the PCM has an important influence on the stress-strain environment of the chondrocyte that potentially varies with depth from the cartilage surface. Furthermore, the significant loss of PCM stiffness that was observed in osteoarthritic cartilage may affect the magnitude and distribution of biomechanical signals perceived by the chondrocytes.

1.
Helminen, H. J., Jurvelin, J., Kiviranta, I., Paukkonen, K., Saamanen, A. M., and Tammi, M., 1987, “Joint Loading Effects on Articular Cartilage: A Historical Review,” Joint Loading: Biology and Health of Articular Structures, H. J. Helminen et al., eds., Wright and Sons, Bristol, UK, pp. 1–46.
2.
Guilak
,
F.
,
Ratcliffe
,
A.
,
Lane
,
N.
,
Rosenwasser
,
M. P.
, and
Mow
,
V. C.
,
1994
, “
Mechanical and Biochemical Changes in the Superficial Zone of Articular Cartilage in Canine Experimental Osteoarthritis
,”
J. Orthop. Res.
,
12
, pp.
474
484
.
3.
Setton
,
L. A.
,
Mow
,
V. C.
,
Muller
,
F. J.
,
Pita
,
J. C.
, and
Howell
,
D. S.
,
1994
, “
Mechanical Properties of Canine Articular Cartilage are Significantly Altered Following Transection of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
12
, pp.
451
463
.
4.
Stockwell, R. A., 1987, “Structure and Function of the Chondrocyte Under Mechanical Stress,” Joint Loading: Biology and Health of Articular Structures, H. J. Helminen, et al., eds., Wright and Sons, Bristol, UK, pp. 126–148.
5.
van Campen, G. P. J., and van de Stadt, R. J., 1987, “Cartilage and Chondrocytes Responses to Mechanical Loading in Vitro,” Joint Loading: Biology and Health of Articular Structures, H. J. Helminen et al., eds., Wright and Sons, Bristol, UK, pp. 112–125.
6.
Freeman
,
P. M.
,
Natarjan
,
R. N.
,
Kimura
,
J. H.
, and
Andriacchi
,
T. P.
,
1994
, “
Chondrocyte Cells Respond Mechanically to Compressive Loads
,”
J. Orthop. Res.
,
12
, pp.
311
320
.
7.
Guilak, F., Sah, R. L., and Setton, L. A., 1997, “Physical Regulation of Cartilage Metabolism,” Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes, eds., Lippincott-Raven, Philadelphia, PA, pp. 179–207.
8.
Mobasheri
,
A.
,
Carter
,
S. D.
,
Martin-Vasallo
,
P.
, and
Shakibaei
,
M.
,
2002
, “
Integrins and Stretch Activated Ion Channels; Putative Components of Functional Cell Surface Mechanoreceptors in Articular Chondrocytes
,”
Cell Biol. Int.
,
26
, pp.
1
18
.
9.
Mow
,
V. C.
,
Wang
,
C. C.
, and
Hung
,
C. T.
,
1999
, “
The Extracellular Matrix, Interstitial Fluid and Ions as a Mechanical Signal Transducer in Articular Cartilage
,”
Osteoarthritis Cartilage
,
7
, pp.
41
58
.
10.
Poole
,
C. A.
,
Ayad
,
S.
, and
Gilbert
,
R. T.
,
1992
, “
Chondrons From Articular Cartilage. V. Immunohistochemical Evaluation of Type VI Collagen Organization in Isolated Chondrons by Light, Confocal and Electron Microscopy
,”
J. Cell. Sci.
,
103
, pp.
1101
1110
.
11.
Poole
,
C. A.
,
1997
, “
Articular Cartilage Chondrons: Form, Function and Failure
,”
J. Anat.
,
191
(
Pt. 1
), pp.
1
13
.
12.
Smirzai, J. A., 1974, “The Concept of the Chondron as a Biomechanical Unit,” Biopolymer und Biomechanik von Bindegewebssystemen, F. Hartmann, eds., Academic Press, New York, pp. 87–91.
13.
Benninghoff
,
A.
,
1925
, “
Form und bau der Gelenkknorpel in ihren Beziehungen Zur Funktion: Zweiter Teil: Der Aufbau des Gelenkknorpels in sienen Bezienhungen zur Funktion
,”
Z. Zellforsch Mikrosk Anat.
,
2
, pp.
783
862
.
14.
Poole
,
C. A.
,
Flint
,
M. H.
, and
Beaumont
,
B. W.
,
1987
, “
Chondrons in Cartilage: Ultrastructural Analysis of the Pericellular Microenvironment in Adult Human Articular Cartilages
,”
J. Orthop. Res.
,
5
, pp.
509
522
.
15.
Poole
,
C. A.
,
Ayad
,
S.
, and
Schofield
,
J. R.
,
1988
, “
Chondrons From Articular Cartilage: I. Immunolocalization of Type VI Collagen in the Pericellular Capsule of Isolated Canine Tibial Chondrons
,”
J. Cell. Sci.
,
90
(
Pt. 4
), pp.
635
643
.
16.
Poole
,
C. A.
,
Honda
,
T.
,
Skinner
,
S. J.
,
Schofield
,
J. R.
,
Hyde
,
K. F.
, and
Shinkai
,
H.
,
1990
, “
Chondrons From Articular Cartilage (II): Analysis of the Glycosaminoglycans in the Cellular Microenvironment of Isolated Canine Chondrons
,”
Connect. Tissue Res.
,
24
, pp.
319
330
.
17.
Poole
,
C. A.
,
Glant
,
T. T.
, and
Schofield
,
J. R.
,
1991
, “
Chondrons From Articular Cartilage. (IV). Immunolocalization of Proteoglycan Epitopes in Isolated Canine Tibial Chondrons
,”
J. Histochem. Cytochem.
,
39
, pp.
1175
1187
.
18.
Poole
,
C. A.
,
Matsuoka
,
A.
, and
Schofield
,
J. R.
,
1991
, “
Chondrons From Articular Cartilage. III. Morphologic Changes in the Cellular Microenvironment of Chondrons Isolated From Osteoarthritic Cartilage
,”
Arthritis Rheum.
,
34
, pp.
22
35
.
19.
Poole
,
C. A.
,
Gilbert
,
R. T.
,
Herbage
,
D.
, and
Hartmann
,
D. J.
,
1997
, “
Immunolocalization of Type IX Collagen in Normal and Spontaneously Osteoarthritic Canine Tibial Cartilage and Isolated Chondrons
,”
Osteoarthritis Cartilage
,
5
, pp.
191
204
.
20.
Poole
,
C. A.
,
Flint
,
M. H.
, and
Beaumont
,
B. W.
,
1988
, “
Chondrons Extracted From Canine Tibial Cartilage: Preliminary Report on Their Isolation and Structure
,”
J. Orthop. Res.
,
6
, pp.
408
419
.
21.
Greco
,
F.
,
Specchia
,
N.
,
Falciglia
,
F.
,
Toesca
,
A.
, and
Nori
,
S.
,
1992
, “
Ultrastructural Analysis of the Adaptation of Articular Cartilage to Mechanical Stimulation
,”
Ital. J. Orthop. Traumatol.
,
18
, pp.
311
321
.
22.
Poole, C. A., 1992, “Chondrons: The Chondrocyte and Its Pericellular Microenvironment,” Articular Cartilage and Osteoarthritis, K. E. Kuettner et al., eds., Academic Press, New York, pp. 201–220.
23.
Lee
,
V.
,
Cao
,
L.
,
Zhang
,
Y.
,
Kiani
,
C.
,
Adams
,
M. E.
, and
Yang
,
B. B.
,
2000
, “
The Roles of Matrix Molecules in Mediating Chondrocyte Aggregation, Attachment, and Spreading
,”
J. Cell. Biochem.
,
79
, pp.
322
333
.
24.
Loeser
,
R. F.
,
Sadiev
,
S.
,
Tan
,
L.
, and
Goldring
,
M. B.
,
2000
, “
Integrin Expression by Primary and Immortalized Human Chondrocytes: Evidence of a Differential Role for Alpha1Beta1 and Alpha2Beta1 Integrins in Mediating Chondrocyte Adhesion to Types II and VI Collagen
,”
Osteoarthritis Cartilage
,
8
, pp.
96
105
.
25.
Knudson
,
W.
, and
Loeser
,
R. F.
,
2002
, “
CD44 and Integrin Matrix Receptors Participate in Cartilage Homeostasis
,”
Cell. Mol. Life Sci.
,
59
, pp.
36
44
.
26.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
, pp.
1663
1673
.
27.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
, “Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments.,” J. Biomech., 30, pp. 1157–1164.
28.
Mow, V. C., Bachrach, N., Setton, L. A., and Guilak, F., 1994, “Stress, Strain, Pressure, and Flow Fields in Articular Cartilage,” Cell Mechanics and Cellular Engineering, V. C. Mow, et al., eds., Springer-Verlag, New York, pp. 345–379.
29.
Bursac
,
P.
,
McGrath
,
C. V.
,
Eisenberg
,
S. R.
, and
Stamenovic
,
D.
,
2000
, “
A Microstructural Model of Elastostatic Properties of Articular Cartilage in Confined Compression
,”
ASME J. Biomech. Eng.
,
122
, pp.
347
353
.
30.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
, pp.
576
586
.
31.
Wang
,
C. C.-B.
,
Hung
,
C. T.
, and
Mow
,
V. C.
,
2001
, “
Analysis of the Effects of Depth-Dependent Aggregate Modulus on Articular Cartilage Stress-Relaxation Behavior in Compression
,”
J. Biomech.
,
34
(
1
), pp.
75
84
.
32.
Hori
,
R. Y.
, and
Mockros
,
L. F.
,
1976
, “
Indentation Tests of Human Articular Cartilage
,”
J. Biomech.
,
9
, pp.
259
268
.
33.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
34.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
,
1991
, “
Interspecies Comparisons of in situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
,
9
, pp.
330
340
.
35.
Zhu
,
W.
,
Mow
,
V. C.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
,
1993
, “
Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments
,”
J. Orthop. Res.
,
11
, pp.
771
781
.
36.
Knight
,
M. M.
,
van de Breevaart Bravenboer
,
J.
,
Lee
,
D. A.
,
van Osch
,
G. J.
,
Weinans
,
H.
, and
Bader
,
D. L.
,
2002
, “
Cell and Nucleus Deformation in Compressed Chondrocyte-Alginate Constructs: Temporal Changes and Calculation of Cell Modulus
,”
Biochim. Biophys. Acta
,
1570
, pp.
1
8
.
37.
Jones
,
W. R.
,
Ting-Beall
,
H. P.
,
Lee
,
G. M.
,
Kelley
,
S. S.
,
Hochmuth
,
R. M.
, and
Guilak
,
F.
,
1997
, “
Mechanical Properties of Human Chondrocytes and Chondrons From Normal and Osteoarthritic Cartilage
,”
Transactions of the Orthopaedic Research Society
,
21
, p.
199
199
.
38.
Jones
,
W. R.
,
Lee
,
G. M.
,
Kelley
,
S. S.
, and
Guilak
,
F.
,
1999
, “
Viscoelastic Properties of Chondrocytes From Normal and Osteoarthritic Human Cartilage
,”
Transactions of the Orthopaedic Research Society
,
24
, p.
157
157
.
39.
Jones
,
W. R.
,
Ting-Beall
,
H. P.
,
Lee
,
G. M.
,
Kelley
,
S. S.
,
Hochmuth
,
R. M.
, and
Guilak
,
F.
,
1999
, “
Alterations in the Young’s Modulus and Volumetric Properties of Chondrocytes Isolated From Normal and Osteoarthritic Human Cartilage
,”
J. Biomech.
,
32
, pp.
119
127
.
40.
Trickey
,
T. R.
,
Lee
,
M.
, and
Guilak
,
T.
,
2000
, “
Viscoelastic Properties of Chondrocytes From Normal and Osteoarthritic Human Cartilage
,”
J. Orthop. Res.
,
18
, pp.
891
898
.
41.
Koay
,
E. J.
,
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
,
2001
, “
Development of a Novel Method for Creep Indentation of Single Chondrocytes
,”
Ann. Biomed. Eng.
,
29
(
Supplement 1
), p.
S–22
S–22
.
42.
Koay, E. J., Shieh, A. C., and Athanasiou, K. A., 2002, “
Creep Indentation of Single Cells,” ASME J. Biomech. Eng., accepted for publication.
43.
Knight
,
M. M.
,
Ross
,
J. M.
,
Sherwin
,
A. F.
,
Lee
,
D. A.
,
Bader
,
D. L.
, and
Poole
,
C. A.
,
2001
, “
Chondrocyte Deformation Within Mechanically and Enzymatically Extracted Chondrons Compressed in Agarose
,”
Biochim. Biophys. Acta
,
1526
, pp.
141
146
.
44.
Lee
,
G. M.
,
Poole
,
C. A.
,
Kelley
,
S. S.
,
Chang
,
J.
, and
Caterson
,
B.
,
1997
, “
Isolated Chondrons: A Viable Alternative for Studies of Chondrocyte Metabolism in Vitro
,”
Osteoarthritis Cartilage
,
5
, pp.
261
274
.
45.
Evans
,
E.
, and
Yeung
,
A.
,
1989
, “
Apparent Viscosity and Cortical Tension of Blood Granulocytes Determined by Micropipet Aspiration
,”
Biophys. J.
,
56
, pp.
151
160
.
46.
Hochmuth
,
R. M.
,
2000
, “
Micropipette Aspiration of Living Cells
,”
J. Biomech.
,
33
, pp.
15
22
.
47.
Evans
,
E. A.
,
1973
, “
New Membrane Concept Applied to the Analysis of Fluid Shear- and Micropipette-Deformed Red Blood Cells
,”
Biophys. J.
,
13
, pp.
941
954
.
48.
Ting-Beall
,
H. P.
,
Needham
,
D.
, and
Hochmuth
,
R. M.
,
1993
, “
Volume and Osmotic Properties of Human Neutrophils
,”
Blood
,
81
, pp.
2774
2780
.
49.
Theret
,
D. P.
,
Levesque
,
M. J.
,
Sato
,
M.
,
Nerem
,
R. M.
, and
Wheeler
,
L. T.
,
1988
, “
The Application of a Homogeneous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements
,”
ASME J. Biomech. Eng.
,
110
, pp.
190
199
.
50.
Sato
,
M.
,
Theret
,
D. P.
,
Wheeler
,
L. T.
,
Oshima
,
N.
, and
Nerem
,
R. M.
,
1990
, “
Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties
,”
ASME J. Biomech. Eng.
,
112
, pp.
263
268
.
51.
Aoki
,
T.
,
Ohashi
,
T.
,
Matsumoto
,
T.
, and
Sato
,
M.
,
1997
, “
The Pipette Aspiration Applied to the Local Stiffness Measurement of Soft Tissues
,”
Ann. Biomed. Eng.
,
25
, pp.
581
587
.
52.
Haider
,
M. A.
, and
Guilak
,
F.
,
2000
, “
An Axisymmetric Boundary Integral Model for Incompressible Linear Viscoelasticity: Application to the Micropipette Aspiration Contact Problem
,”
ASME J. Biomech. Eng.
,
122
, pp.
236
244
.
53.
Haider
,
M. A.
, and
Guilak
,
F.
,
2002
, “
An Axisymmetric Boundary Integral Model for Assessing Elastic Cell Properties in the Micropipette Aspiration Contact Problem
,”
ASME J. Biomech. Eng.
,
124
, pp.
586
595
.
54.
Kumar
,
M.
, and
Hiremath
,
K. U.
,
1982
, “
Annular Punch Problem for an Elastic Layer Overlying an Elastic Foundation
,”
Indian J. Pure Appl. Math.
,
13
(
5
), pp.
573
580
.
55.
Barber, J. R., 1992, Elasticity, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 200–203.
56.
Sneddon
,
I. N.
,
1947
, “
Note on a Boundary Value Problem of Reissner and Sagoci
,”
J. Appl. Phys.
,
18
, pp.
130
132
.
57.
Gladwell, G. M. L., 1980, Contact Problems in the Classical Theory of Elasticity, Alphen aan den Rijn, The Netherlands.
58.
Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., 1953, Higher Transcendental Functions, McGraw-Hill, New York, p. 101.
59.
Guilak
,
F.
,
2000
, “
The Deformation Behavior and Viscoelastic Properties of Chondrocytes in Articular Cartilage
,”
Biorheology
,
37
, pp.
27
44
.
60.
Guilak
,
F.
,
Jones
,
W. R.
,
Ting-Beall
,
H. P.
, and
Lee
,
G. M.
,
1999
, “
The Deformation Behavior and Mechanical Properties of Chondrocytes in Articular Cartilage
,”
Osteoarthritis Cartilage
,
7
, pp.
59
70
.
61.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
, pp.
499
506
.
62.
Chen
,
S. S.
,
Falcovitz
,
Y. H.
,
Schneiderman
,
R.
,
Maroudas
,
A.
, and
Sah
,
R. L.
,
2001
, “
Depth-Dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage: Relationship to Fixed Charge Density
,”
Osteoarthritis Cartilage
,
9
, pp.
561
569
.
63.
Guilak
,
F.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1995
, “
Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study
,”
J. Orthop. Res.
,
13
, pp.
410
421
.
64.
Akizuki
,
S.
,
Mow
,
V. C.
,
Muller
,
F.
,
Pita
,
J. C.
, and
Howell
,
D. S.
,
1987
, “
Tensile Properties of Human Knee Joint Cartilage. II. Correlations Between Weight Bearing and Tissue Pathology and the Kinetics of Swelling
,”
J. Orthop. Res.
,
5
, pp.
173
186
.
65.
Setton
,
L. A.
,
Mow
,
V. C.
, and
Howell
,
D. S.
,
1995
, “
Mechanical Behavior of Articular Cartilage in Shear is Altered by Transection of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
13
, pp.
473
482
.
66.
LeRoux
,
M. A.
,
Arokoski
,
J.
,
Vail
,
T. P.
,
Guilak
,
F.
,
Hyttinen
,
M. M.
,
Kiviranta
,
I.
, and
Setton
,
L. A.
,
2000
, “
Simultaneous Changes in the Mechanical Properties, Quantitative Collagen Organization, and Proteoglycan Concentration of Articular Cartilage Following Canine Meniscectomy
,”
J. Orthop. Res.
,
18
, pp.
383
392
.
67.
Lee
,
G. M.
,
Paul
,
T. A.
,
Slabaugh
,
M.
, and
Kelley
,
S. S.
,
2000
, “
The Incidence of Enlarged Chondrons in Normal and Osteoarthritic Human Cartilage and Their Relative Matrix Density
,”
Osteoarthritis Cartilage
,
8
, pp.
44
52
.
68.
Guilak
,
F.
,
Alexopoulos
,
L. G.
,
Nielsen
,
R.
,
Ting-Beall
,
H. P.
, and
Haider
,
M. A.
,
2002
, “
The Biomechanical Properties of the Chondrocyte Pericellular Matrix: Micropipette Aspiration of Mechanically Isolated Chondrons
,”
Transactions of the Orthopaedic Research Society
,
27
, p.
405
405
.
69.
Hing
,
W. A.
,
Sherwin
,
A. F.
, and
Poole
,
C. A.
,
2002
, “
The Influence of the Pericellular Microenvironment on the Chondrocyte Response to Osmotic Challenge
,”
Osteoarthritis Cartilage
,
10
, pp.
297
307
.
70.
Knight
,
M. M.
,
Lee
,
D. A.
, and
Bader
,
D. L.
,
1998
, “
The Influence of Elaborated Pericellular Matrix on the Deformation of Isolated Articular Chondrocytes Cultured in Agarose
,”
Biochim. Biophys. Acta
,
1405
, pp.
67
77
.
71.
Winter
,
G. M.
,
Poole
,
C. A.
,
Ilic
,
M. Z.
,
Ross
,
J. M.
,
Robinson
,
H. C.
, and
Handley
,
C. J.
,
1998
, “
Identification of Distinct Metabolic Pools of Aggrecan and Their Relationship to Type VI Collagen in the Chondrons of Mature Bovine Articular Cartilage Explants
,”
Connect. Tissue Res.
,
37
, pp.
277
293
.
You do not currently have access to this content.