The stiffness of articular cartilage is a nonlinear function of the strain amplitude and strain rate as well as the loading history, as a consequence of the flow of interstitial water and the stiffening of the collagen fibril network. This paper presents a full investigation of the interplay between the fluid kinetics and fibril stiffening of unconfined cartilage disks by analyzing over 200 cases with diverse material properties. The lower and upper elastic limits of the stress (under a given strain) are uniquely established by the instantaneous and equilibrium stiffness (obtained numerically for finite deformations and analytically for small deformations). These limits could be used to determine safe loading protocols in order that the stress in each solid constituent remains within its own elastic limit. For a given compressive strain applied at a low rate, the loading is close to the lower limit and is mostly borne directly by the solid constituents (with little contribution from the fluid). In contrast, however in case of faster compression, the extra loading is predominantly transported to the fibrillar matrix via rising fluid pressure with little increase of stress in the nonfibrillar matrix. The fibrillar matrix absorbs the loading increment by self-stiffening: the quicker the loading the faster the fibril stiffening until the upper elastic loading limit is reached. This self-protective mechanism prevents cartilage from damage since the fibrils are strong in tension. The present work demonstrates the ability of the fibril reinforced poroelastic models to describe the strain rate dependent behavior of articular cartilage in unconfined compression using a mechanism of fibril stiffening mainly induced by the fluid flow.

1.
Borrelli
, Jr.,
J.
,
Torzilli
,
P. A.
,
Grigiene
,
R.
, and
Helfet
,
D. L.
,
1997
, “
Effect of Impact Load on Articular Cartilage: Development of an Intra-articular Fracture Model
,”
J. Orthop. Trauma
,
11
, pp.
319
326
.
2.
Broom
,
N. D.
,
1986
, “
Structural Consequences of Traumatizing Articular Cartilage
,”
Ann. Rheum. Dis.
,
45
, pp.
225
234
.
3.
Jeffrey
,
J. E.
,
Gregory
,
D. W.
, and
Aspden
,
R. M.
,
1995
, “
Matrix Damage and Chondrocyte Viability Following a Single Impact Load on Articular Cartilage
,”
Arch. Biochem. Biophys.
,
322
, pp.
87
96
.
4.
Kerin
,
A. J.
,
Wisnom
,
M. R.
, and
Adams
,
M. A.
,
1998
, “
The Compressive Strength of Articular Cartilage
,”
Proceedings of the Institution of Mechanical Engineers, Part H-Journal of Engineering in Medicine
,
212
, pp.
273
280
.
5.
Quinn
,
T. M.
,
Grodzinsky
,
A. J.
,
Hunziker
,
E. B.
, and
Sandy
,
J. D.
,
1998
, “
Effects of Injurious Compression on Matrix Turnover Around Individual Cells in Calf Articular Cartilage Explants
,”
J. Orthop. Res.
,
16
, pp.
490
499
.
6.
Repo
,
R. U.
, and
Finlay
,
J. B.
,
1977
, “
Survival of Articular Cartilage After Controlled Impact
,”
J. Bone Jt. Surg., Am. Vol.
,
59
, pp.
1068
1076
.
7.
Simon
,
S. R.
,
Radin
,
E. L.
,
Paul
,
I. L.
, and
Rose
,
R. M.
,
1972
, “
The Response of Joints to Impact Loading-II In Vivo Behavior of Subchondral Bone
,”
J. Biomech.
,
5
, pp.
267
272
.
8.
Torzilli
,
P. A.
,
Grigiene
,
R.
,
Borrelli
, Jr.,
J.
, and
Helfet
,
D. L.
,
1999
, “
Effect of Impact Load on Articular Cartilage: Cell Metabolism and Viability, and Matrix Water Content
,”
J. Biomech. Eng.
,
121
, pp.
433
441
.
9.
Chen
,
C.-T.
,
Burton-Wurster
,
N.
,
Lust
,
G.
,
Bank
,
R. A.
, and
Tekoppele
,
J. M.
,
1999
, “
Compositional and Metabolic Changes in Damaged Cartilage are Peak-stress, Stress-rate, and Loading-duration Dependent
,”
J. Orthop. Res.
,
17
, pp.
870
879
.
10.
Ewers
,
B. J.
,
Dvoracek-Driksna
,
D.
,
Orth
,
M. W.
, and
Haut
,
R. C.
,
2001
, “
The Extent of Matrix Damage and Chondrocyte Death in Mechanically Traumatized Articular Cartilage Explants Depends on Rate of Loading
,”
J. Orthop. Res.
,
19
, pp.
779
784
.
11.
Kurz
,
B.
,
Jin
,
M.
,
Patwari
,
P.
,
Lark
,
M. W.
, and
Grodzinsky
,
A. J.
,
2000
, “
Biosynthetic Response and Mechanical Properties of Articular Cartilage After Injurious Compression: The Importance of Strain Rate
,”
ORS Transactions
,
25
, p.
180
180
.
12.
Quinn
,
T.
,
Allen
,
R.
,
Schalet
,
B.
,
Perumbuli
,
P.
, and
Hunziker
,
E.
,
2000
, “
Matrix Damage and Cell Injury Caused by Ramp Compression of Adult Bovine Articular Cartilage Explants: Effects of Strain Rate and Peak Stress
,”
ORS Transactions
,
25
, p.
106
106
.
13.
Armstrong
,
C. G.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
An Analysis of the Unconfined Compression of Articular Cartilage
,”
J. Biomech. Eng.
,
106
, pp.
165
173
.
14.
Li
,
L. P.
,
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model
,”
Clinical Biomechanics
,
14
, pp.
673
682
.
15.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
2000
, “
A Fibril Reinforced Nonhomogeneous Poroelastic Model for Articular Cartilage: Inhomogeneous Response in Unconfined Compression
,”
J. Biomech.
,
33
, pp.
1533
1541
.
16.
Li
,
L. P.
,
Shirazi-Adl
,
A.
, and
Buschmann
,
M. D.
,
2002
, “
Alterations in Mechanical Behavior Of Articular Cartilage Due to Changes in Depth Varying Material Properties–A Nonhomogeneous Poroelastic Model Study
,”
Computer Methods in Biomechanics and Biomedical Engineering
,
5
, pp.
45
52
.
17.
Langelier
,
E.
, and
Buschmann
,
M. D.
,
1999
, “
Amplitude Dependent Mechanical Alteration and Nonlinearity of Articular Cartilage Material Behavior in Unconfined Compression
,”
ORS Transactions
,
24
, p.
647
647
.
18.
Li
,
L. P.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
2001
, “
Fibril Stiffening Accounts for Strain-dependent Stiffness of Articular Cartilage in Unconfined Compression
,”
ORS Transactions
,
26
, p.
425
425
.
19.
Oegema
, Jr.,
T. R.
,
Carpenter
,
R. J.
,
Hofmeister
,
F.
, and
Thompson
, Jr.,
R. C.
,
1997
, “
The Interaction of the Zone of Calcified Cartilage and Subchondral Bone in Osteoarthritic
,”
Microsc. Res. Tech.
,
37
, pp.
324
332
.
20.
Mente
,
P. L.
, and
Lewis
,
J. L.
,
1994
, “
Elastic Modulus of Calcified Cartilage is an Order of Magnitude Less than that of Subchondral Bone
,”
J. Orthop. Res.
,
12
, pp.
637
647
.
21.
Li
,
B.
, and
Aspden
,
R. M.
,
1997
, “
Mechanical and Material Properties of the Subchondral Bone Plate from the Femoral Head of Patients with Osteoarthritis or Osteoporosis
,”
Ann. Rheum. Dis.
,
56
, pp.
247
254
.
22.
Cederbaum, G., Li, L. P., and Schulgasser, K., 2000, Poroelastic Structures, Elsevier Science Ltd., New York.
23.
McCormack
,
T.
, and
Mansour
,
J. M.
,
1998
, “
Reduction in Tensile Strength of Cartilage Precedes Surface Damage Under Repeated Compression Loading In Vitro
,”
J. Biomech.
,
31
, pp.
55
61
.
You do not currently have access to this content.