A pulsatile flow in vitro model of the distal end-to-side anastomosis of an arterial bypass graft was used to examine the effects that different flow ratios between the proximal outlet segment (POS) and the distal outlet segment (DOS) have on the flow patterns and the distributions of hemodynamic factors in the anastomosis. Amberlite particles were tracked by flow visualization to determine overall flow patterns and velocity measurements were made with Laser Doppler anemometry (LDA) to obtain detailed hemodynamic factors along the artery floor and the graft hood regions. These factors included wall shear stress (WSS), spatial wall shear stress gradient (WSSG), and oscillatory index (OSI). Statistical analysis was used to compare these hemodynamic factors between cases having different POS:DOS flow ratios (Case 1—0:100, Case 2—25:75, Case 3—50:50). The results showed that changes in POS:DOS flow ratios had a great influence on the flow patterns in the anastomosis. With an increase in proximal outlet flow, the range of location of the stagnation point along the artery floor decreased, while the extent of flow separation along the graft hood increased. The statistical results showed that there were significant differences p<0.05 for the mean WSS between cases along the graft hood, but no significant differences were detected along the artery floor. There were no significant differences for the spatial WSSG along both the artery floor and the graft hood. However, there were significant differences p<0.05 in the mean OSI between Cases 1 and 2 and between Cases 1 and 3 both along the artery floor and along the graft hood. Comparing these mechanical factors with histological findings of intimal hyperplasia formation obtained by previous canine studies, the results of the statistical analysis suggest that regions exposed to a combination of low mean WSS and high OSI may be most prone to the formation of intimal hyperplasia.

1.
Echave
,
V.
,
Koornick
,
A. R.
, and
Haimov
,
M.
,
1979
, “
Intimal Hyperplasia as a Complication of the Use of the Polytetrafluoroethylene Graft for Femoral-Popliteal Bypass
,”
Surgery
,
86
, pp.
791
798
.
2.
Imparato
,
A. M.
,
Brocco
,
A.
,
Kim
,
G. E.
, and
Zeff
,
R.
,
1972
, “
Intimal and Neointimal Fibrous Proliferation Causing Failure of Arterial Reconstructions
,”
Surgery
,
72
, pp.
1007
1014
.
3.
LoGerfo
,
F. W.
,
Quist
,
W. C.
,
Nowak
,
M. D.
,
Crawshaw
,
H. M.
, and
Haudenschild
,
C. C.
,
1983
, “
Downstream Anastomotic Hyperplasia
,”
Ann. Surg.
,
197
, pp.
479
483
.
4.
De Weese, J. A., 1985, “Anastomotic Neointimal Fibrous Hyperplasia,” in: Complications in Vascular Surgery, 2nd ed., Bernhard, V. M., and Tourne, J. B., eds., Grune & Stratton, New York.
5.
Dilley
,
R. J.
,
McGeachie
,
J. K.
, and
Prendergast
,
F. J.
,
1988
, “
A Review of the Histologic Changes in Vein-to-Artery Grafts With Particular Reference to Intimal Hyperplasia
,”
Arch. Surg.
,
123
, pp.
691
696
.
6.
Sottiurai
,
V. S.
,
Yao
,
J. S. T.
,
Batson
,
R. C.
,
Sue
,
S. L.
,
Jones
,
R.
, and
Nakamura
,
Y. A.
,
1989
, “
Distal Anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis
,”
Ann. Vasc. Surg.
,
3
, pp.
26
33
.
7.
Bassiouny
,
H. S.
,
White
,
S. S.
,
Glagov
,
S.
,
Choi
,
E.
,
Giddens
,
D. P.
, and
Zarins
,
C. K.
,
1992
, “
Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced?
J. Vasc. Surg.
,
15
, pp.
708
717
.
8.
White
,
S. S.
,
Zarins
,
C. K.
,
Giddens
,
D. P.
,
Bassiouny
,
H. S.
,
Loth
,
F.
,
Jones
,
S. A.
, and
Glagov
,
S.
,
1993
, “
Hemodynamic Patterns in Two Flow Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number and Hood Length
,”
ASME J. Biomech. Eng.
,
115
, pp.
104
111
.
9.
Keynton
,
R. S.
,
Rittgers
,
S. E.
, and
Shu
,
M. C. S.
,
1991
, “
The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An In Vitro Model Study
,”
ASME J. Biomech. Eng.
,
113
, pp.
458
463
.
10.
Hofer
,
M.
,
Rappitsch
,
G.
,
Perktold
,
K.
,
Trubel
,
W.
, and
Schima
,
H.
,
1996
, “
Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Intimal Hyperplasia
,”
J. Biomech.
,
29
, pp.
1297
1308
.
11.
Hughes
,
P. E.
, and
How
,
T. V.
,
1996
, “
Effects of Geometry and Flow Division on Flow Structures in Models of the Distal End-to-Side Anastomosis
,”
J. Biomech.
,
29
, pp.
855
872
.
12.
Ethier
,
C. R.
,
Steinman
,
D. A.
,
Zhang
,
X.
,
Karpik
,
S. R.
, and
Ojha
,
M.
,
1998
, “
Flow Waveform Effects on End-to-Side Anastomotic Flow Patterns
,”
J. Biomech.
,
31
, pp.
609
617
.
13.
Keynton, R. S., Evancho, M. M., Sims, R. L., Rodway, N., and Rittgers, S. E., 1995, “Direct Relationship Between Wall Shear Rate and Intimal Hyperplasia in Vascular Bypass Grafts,” in: Advances in Bioengineering, Hull, M. L., ed., ASME BED-Vol. 31, pp. 169–170.
14.
Loth, F., Jones, S. A., Giddens, D. P., Bassiouny, H. S., Glagov, S., and Zarins, C. K., 1995, “A Correlative Study of Intimal Thickening and Wall Shear Stress Inside a Canine Vascular Graft Model,” in: Advances in Bioengineering, Hull, M. L., ed., ASME BED-Vol. 31, pp. 167–168.
15.
Keynton, R. S., 1995: “The Effect of Graft Caliber Upon Hemodynamics and Intimal Hyperplasia in the Distal Anastomoses of Chronic Vascular Bypass Grafts,” Ph.D. Dissertation, The University of Akron, OH.
16.
Loth, F., 1993, “Velocity and Wall Shear Measurements Inside a Vascular Graft Model Under Steady and Pulsatile Flow Conditions,” Ph.D. Dissertation, Georgia Institute of Technology.
17.
Loth
,
F.
,
Jones
,
S. A.
,
Giddens
,
D. P.
,
Bassiouny
,
H. S.
,
Glagov
,
S.
, and
Zarins
,
C. K.
,
1997
, “
Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions
,”
ASME J. Biomech. Eng.
,
119
, pp.
187
194
.
18.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
, pp.
74
82
.
19.
Fatemi
,
R. S.
, and
Rittgers
,
S. E.
,
1994
, “
Derivation of Shear Rates From Near-Wall LDA Measurements Under Steady and Pulsatile Flow Conditions
,”
ASME J. Biomech. Eng.
,
116
, pp.
361
368
.
20.
Loth, F., Jones, S. A., Giddens, D. P., and Brossolet, L.-J., 1994, “Accuracy of Wall Shear Stress Estimates From Laser Doppler Anemometry Measurements Under Unsteady Flow Conditions,” in: Advances in Bioengineering, Askew, M. J., ed., ASME BED-Vol. 28, pp. 307–308.
21.
Ojha
,
M.
,
1993
, “
Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model
,”
J. Biomech.
,
26
, pp.
1377
1388
.
22.
Loth, F., Jones, S. A., Giddens, D. P., Bassiouny, H. S., Glagov, S., and Zarins, C. K., 1995, “Wall Shear Stress Measurements Inside a Vascular Graft Model Under Pulsatile Flow Conditions,” in: Advances in Bioengineering, Hochmuth, R. M., Langrana, N. A., and Hefzy, M. S., eds., ASME BED-Vol. 29, pp. 9–10.
23.
Davies
,
P. F.
,
1995
, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
,
75
, pp.
519
560
.
24.
Helmlinger
,
G.
,
Geiger
,
R. V.
,
Schreck
,
S.
, and
Nerem
,
R. M.
,
1991
, “
Effects of Pulsatile Flow on Cultured Vascular Endothelial Cell Morphology
,”
ASME J. Biomech. Eng.
,
113
, pp.
123
131
.
25.
Thoumine
,
O.
,
Nerem
,
R. M.
, and
Girard
,
P. R.
,
1995
, “
Oscillatory Shear Stress and Hydrostatic Pressure Modulate Cell-Matrix Attachment Proteins in Cultured Endothelial Cells
,”
In Vitro Cell Dev. Biol.
,
31A
, pp.
45
54
.
26.
Bao
,
X. P.
, and
Frangos
,
J. A.
,
1997
, “
NO Regulates PDGF-A and MCP-1 Expression Induced by Gradients in Shear Stress in Endothelial Cells
,”
Ann. Biomed. Eng.
,
25
(
S1
), pp.
S-53
S-53
.
27.
Ziegler
,
T.
,
Bouzourene
,
K.
,
Harrison
,
V. J.
,
Brunner
,
H. R.
, and
Hayoz
,
D.
,
1998
, “
Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells
,”
Arterioscler., Thromb., Vasc. Biol.
,
18
, pp.
686
692
.
You do not currently have access to this content.