An idealized three-dimensional finite element model of a rodlike trabecular bone structure was developed to study its static and dynamic responses under compressive loading, considering the effects of bone marrow and apparent density. Static analysis of the model predicted hydraulic stiffening of trabecular bone due to the presence of bone marrow. The predicted power equation relating trabecular bone apparent elastic modulus to its apparent density was in good agreement with those of the reported experimental investigations. The ratio of the maximum stress in the trabecular bone tissue to its apparent stress had a high value, decreasing with increasing bone apparent density. Frequency analyses of the model predicted higher natural frequencies for the bone without marrow than those for the bone with marrow. Adding a mass relatively large compared to that of bone rendered a single-degree-of-freedom response. In this case, the resonant frequency was higher for the bone with marrow than that for the bone without marrow. The predicted vibrational measurement of apparent modulus was in good agreement with that of the static measurement, suggesting vibrational testing as a method for nondestructive measurement of trabecular bone elastic moduli.

1.
Ashman
R. B.
,
Corin
J. D.
, and
Turner
C. H.
,
1987
, “
Elastic properties of cancellous bone: measurement by an ultrasonic technique
,”
J. Biomechanics
, Vol.
20
, pp.
979
986
.
2.
Burkhardt
R.
,
Kettner
G.
,
Bohm
W.
,
Schmidmeier
M.
,
Schlag
R.
,
Frisch
B.
,
Mallmann
B.
,
Eisenmenger
W.
, and
Gilg
T.
,
1987
, “
Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study
,”
Bone
, Vol.
8
, pp.
157
164
.
3.
Carter
D. R.
, and
Hayes
W. C.
,
1977
, “
The compressive behaviour of bone as a two-phase porous structure
,”
J. Bone Jt. Surg.
, Vol.
59A
, pp.
954
962
.
4.
Carter
D. R.
,
Fyhrie
D. P.
, and
Whalen
R. T.
,
1987
, “
Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy
,”
J. Biomechanics
, Vol.
20
, pp.
785
794
.
5.
Fazzalari
N. L.
,
Darracott
J.
, and
Vernon-Roberts
B.
,
1985
, “
Histomorphometric changes in the trabecular structure of a selected stress region in the femur in patients with osteoarthritis and fracture of the femoral neck
,”
Bone
, Vol.
6
, pp.
125
133
.
6.
Fitzgerald
E. R.
,
1964
, “
Simple method for observing audiofrequency resonances and sound beams in crystals
,”
J. Acoust. Soc. Am.
, Vol.
36
, pp.
2086
2089
.
7.
Fitzgerald
E. R.
,
1966
, “
Observations of nonelastic audiofrequency resonances
,”
J. Acoust. Soc. Am.
, Vol.
39
, pp.
870
877
.
8.
Gibson
L. J.
,
1985
, “
The mechanical behaviour of cancellous bone
,”
J. Biomechanics
, Vol.
18
, pp.
317
328
.
9.
Guo
X. E.
,
McMahon
T. A.
,
Keaveny
T. M.
,
Hayes
W. C.
, and
Gibson
I.
,
1994
, “
Finite element modelling of damage accumulation in trabecular bone under cyclic loading
,”
J. Biomechanics
, Vol.
27
, pp.
145
155
.
10.
Hakim
N. S.
, and
King
A. L.
,
1979
, “
A three dimensional finite element dynamic response analysis of a vertebra with experimental verification
,”
J. Biomechanics
, Vol.
12
, pp.
277
292
.
11.
Harrigan
T. P.
,
Jasty
M.
,
Mann
R. W.
, and
Harris
W. H.
,
1988
, “
Limitations of the continuum assumption in cancellous bone
,”
J. Biomechanics
, Vol.
21
, pp.
269
275
.
12.
Hollister
S. J.
,
Fyhrie
D. P.
,
Jepsen
K. J.
, and
Goldstein
A.
,
1991
, “
Application of homogenization theory to the study of trabecular bone mechanics
,”
J. Biomechanics
, Vol.
24
, pp.
825
839
.
13.
Huiskes
R.
, and
Chao
E. Y. S.
,
1983
, “
A survey of finite element analysis in orthopaedic biomechanics: the first decade
,”
J. Biomechanics
, Vol.
16
, pp.
385
410
.
14.
Jensen
K. S.
,
Mosekilde
L.
, and
Mosekilde
L.
,
1990
, “
A model of vertebral trabecular bone architecture and its mechanical properties
,”
Bone
, Vol.
II
, pp.
417
423
.
15.
Keaveny
T. M.
, and
Hayes
W. C.
,
1993
, “
A 20-year perspective on the mechanical properties of trabecular bone
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
115
, pp.
534
542
.
16.
Linde
F.
,
Norgaard
P.
,
Hivid
I.
,
Odgaard
A.
, and
So̸balle
K.
,
1991
, “
Mechanical properties of trabecular bone. Dependency on strain rate
,”
J. Biomechanics
, Vol.
24
, pp.
803
809
.
17.
Linde
F.
,
Hvid
1.
, and
Madsen
F.
,
1992
, “
The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens
,”
J. Biomechanics
, Vol.
25
, pp.
359
368
.
18.
Mu¨ller
P.
, and
Ru¨egsegger
P.
,
1995
, “
Three dimensional finite element modelling of noninvasively assessed trabecular bone structures
,”
Med. Eng. Phys.
, Vol.
17
, pp.
126
133
.
19.
Ochoa
J. A.
,
Heck
D. A.
,
Brandt
K. D.
, and
Hillberry
B. M.
,
1991
, “
The effect of intertrabecular fluid on femoral head mechanics
,”
The Journal of Rheumatology
, Vol.
18
, pp.
580
584
.
20.
Odgaard
A.
, and
Linde
F.
,
1991
, “
The underestimation of Young’s modulus in compressive testing of cancellous bone specimens
,”
J. Biomechanics
, Vol.
24
, pp.
691
698
.
21.
Olsen
L. G.
, and
Bathe
K. J.
,
1983
, “
A study of displacement-based fluid elements for calculating frequencies of fluid and fluid-structure systems
,”
Nucl. Eng. Design
, Vol.
76
, pp.
137
151
.
22.
Pugh
J. W.
,
Rose
R. M.
,
Paul
I. L.
, and
Radin
E. L.
,
1973
, “
Mechanical resonance spectra in human cancellous bone
,”
Science
, Vol.
181
, pp.
271
272
.
23.
Pugh
J. W.
,
Rose
R. M.
, and
Radin
E. L.
,
1973
, “
Elastic and viscoelastic properties of trabecular bone: dependence on structure
,”
J. Biomechanics
, Vol.
6
, pp.
475
485
.
24.
Rietbergen
B. V.
,
Weinans
H.
,
Huiskes
R.
, and
Odgaard
A.
,
1995
, “
A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models
,”
J. Biomechanics
, Vol.
28
, pp.
69
81
.
25.
Simon
B. R.
,
Wu
J. S. S.
,
Carlton
M. W.
,
Evans
J. H.
, and
Kazarian
L. E.
,
1985
a, “
Poroelastic dynamic structural models of rhesus motion segments
,”
Spine
, Vol.
10
, pp.
494
507
.
26.
Simon
B. R.
,
Wu
J. S. S.
,
Carlton
M. W.
,
Evans
J. H.
, and
Kazarian
L. E.
,
1985
b, “
Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disk
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
107
, pp.
327
335
.
27.
Weinhold
P. S.
,
Abrams
C. F.
,
Roe
S. C.
, and
Gilbert
J. A.
,
1995
, “
Evaluation of the directional elastic properties of vertebral cancellous bone by nondestructive vibrational analysis
,”
Trans. ORS
, Vol.
20
, pp.
534
534
.
28.
Weinstein
R. S.
, and
Hutson
M. S.
,
1987
, “
Decreased trabecular width and increased trabecular spacing contribute to bone loss with aging
,”
Bone
, Vol.
8
, pp.
137
142
.
29.
Williams
J. L.
, and
Lewis
J. L.
,
1982
, “
Properties and anisotropic model of cancellous bone from the proximal tibial epiphysis
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
104
, pp.
50
56
.
30.
Townsend
P. R.
, and
Rose
R. M.
,
1975
, “
Buckling studies of single human trabeculae
,”
J. Biomechanics
, Vol.
8
, pp.
199
201
.
This content is only available via PDF.
You do not currently have access to this content.