Turbulence inducement from the glottis was scrutinized by employing an idealized model of the larynx and trachea for oscillatory flow conditions. The characterization of turbulence was achieved with the two-component velocity measurements of split-film probe anemometry and with the flow visualization of a smoke-wire technique. The apertures of two different (triangular and circular) shapes were utilized in the airway model to address the distinct effects of the triangular-shaped glottal aperture on the generation, development, and decay of turbulence. One of the salient turbulence characteristics for the triangular aperture case was found to be the relatively high turbulence levels around the center region (2r/D ~ 0) in conjunction with the asymmetric mean axial velocity across the frontal-rear (A-O-P) plane of the trachea at one tracheal diameter (x/D = 1) downstream from the glottis. The detailed turbulence properties such as the Reynolds shear stresses and turbulence intensities for the triangular aperture case differed significantly from those for the circular aperture case within a few tracheal diameters (x/D < 7) downstream from the apertures. The glottis-induced turbulence was incipient during the acceleration phase of inspiration and convected downstream with the traits of decaying turbulence.

1.
Akhavan
R.
,
Kamm
R. D.
, and
Shapiro
A. H.
,
1991
, “
An Investigation of Transition to Turbulence in Bounded Oscillatory Stokes Flows, Part 1. Experiments
,”
Journal of Fluid Mechanics
, Vol.
225
, pp.
395
422
.
2.
Ahmed
S. A.
, and
Giddens
D. P.
,
1983
, “
Velocity Measurements in Steady Flow Through Axisymmetric Stenoses at Moderate Reynolds Numbers
,”
Journal of Biomechanics
, Vol.
16
, No.
7
, pp.
505
516
.
3.
Baier
H.
,
Wanner
A.
,
Zarzecki
S.
, and
Sackner
M.
,
1977
, “
Relationships Among Glottis Opening, Respiratory Flow, and Upper Airway Resistance in Humans
,”
Journal of Applied Physiology
, Vol.
43
(
4
), pp.
603
611
.
4.
Bertelsen
A. F.
, and
Thorsen
L. K.
,
1982
, “
An Experimental Investigation of Oscillatory Flow in Pipe Bends
,”
Journal of Fluid Mechanics
, Vol.
118
, pp.
269
284
.
5.
Bosch, M. Ten, 1936, Die Wa¨rmeu¨bertragung, 3rd ed., Springer-Verlag, Berlin.
6.
Brancatisano
P. W.
,
Collett
P. W.
, and
Engel
L. A.
,
1983
, “
Respiratory Movements of the Vocal Cords
,”
J. Appl. Physiol.: Respirat. Environ. Exercise Physiol
, Vol.
54
(
5
), pp.
1269
1276
.
7.
Cassancva
R. A.
, and
Giddens
D. P.
,
1978
, “
Disorder Distal to Modeled Stenoses in Steady and Pulsatile Flow
,”
Journal of Biomechanics
, Vol.
11
, pp.
441
453
.
8.
Cebeci, T., and Bradshaw, P., 1988, Physical and Computational Aspects of Convective Heat Transfer, Springer-Verlag, New York.
9.
Chan
T. L.
,
Schreck
R. M.
, and
Lippmann
M.
,
1980
, “
Effect of the Laryngeal Jet on Particle Deposition in the Human Trachea and Upper Bronchial Airways
,”
J. Aerosol Sci.
, Vol.
11
, pp.
447
459
.
10.
Choi
Y.
, and
Wroblewski
D. E.
,
1993
, “
Visualization of Transition to Turbulence in Oscillatory Flow Through a Rigid Cast Model of the Central Airways
,”
Advances in Bioengineering
, ASME BED-Vol.
26
, pp.
169
172
.
11.
Clark
C.
,
1976
a, “
The Fluid Mechanics of Aortic Stenosis—I. Theory and Steady Flow Experiments
,”
Journal of Biomechanics
, Vol.
9
, pp.
521
528
.
12.
Clark
C.
,
1976
b, “
Turbulent Velocity Measurements in a Model of Aortic Stenosis
,”
Journal of Biomechanics
, Vol.
9
, pp.
677
687
.
13.
Dekker
E.
,
1961
, “
Transition Between Laminar and Turbulent Flow in Human Trachea
,”
Journal of Applied Physiology
, Vol.
16
(
6
), pp.
1060
1064
.
14.
Eckmann
D. M.
, and
Grotberg
J. B.
,
1988
, “
Oscillatory Flow and Mass Transport in a Curved Tube
,”
Journal of Fluid Mechanics
, Vol.
188
, pp.
509
527
.
15.
Eckmann
D. M.
, and
Grotberg
J. B.
,
1991
, “
Experiments on Transition to Turbulence in Oscillatory Pipe Flow
,”
Journal of Fluid Mechanics
, Vol.
222
, pp.
329
350
.
16.
England
S. E.
,
Bartlett
B.
, and
Daubenspeck
J. A.
,
1982
, “
Influence of Human Vocal Cord Movements on Airflow and Resistance During Eupnea
,”
J. Appl. Physiol.: Respirat. Environ. Exercise Physiol
, Vol.
52
(
3
), pp.
773
779
.
17.
Fink, R. B., and Demarest, R. J., 1978, Laryngeal Biomechanics, Harvard University Press, Cambridge, MA.
18.
Hino
M.
,
Sawamoto
M.
, and
Takasu
S.
,
1976
, “
Experiments on Transition to Turbulence in an Oscillatory Pipe Flow
,”
Journal of Fluid Mechanics
, Vol.
75
, Part 2, pp.
193
207
.
19.
Hino
M.
,
Kashiwayanagi
M.
,
Nakayama
A.
, and
Hara
T.
,
1983
, “
Experiments on the Turbulence Statistics and the Structure of a Reciprocating Oscillatory Flow
,”
Journal of Fluid Mechanics
, Vol.
131
, pp.
363
400
.
20.
Hinze, J. O., 1975, Turbulence, McGraw-Hill, New York.
21.
Horsfield
K.
, and
Cuinming
G.
,
1968
a, “
Morphology of the Bronchial Tree In Man
,”
Journal of Applied Physiology
, Vol.
24
(
3
), pp.
373
383
.
22.
Horsfield
K.
, and
Gumming
G.
,
1968
b, “
Functional Consequences of Airway Morphology
,”
Journal of Applied Physiology
, Vol.
24
(
3
), pp.
384
390
.
23.
Kim
B. M.
, and
Corcoran
W. H.
,
1974
, “
Experimental Measurements of Turbulence Spectra Distal to Stenoses
,”
Journal of Biomechanics
, Vol.
7
, pp.
335
342
.
24.
Martonen
T. B.
,
1983
, “
Measurement of Particle Dose Distribution in a Model of a Human Larynx and Tracheobronchial Tree
,”
J. Aerosol Sci.
, Vol.
14
, pp.
11
22
.
25.
Menon
A. S.
,
Weber
M. E.
, and
Chang
H. K.
,
1984
, “
A Model Study of Flow Dynamics in Huinan Central Airways. Part III: Oscillatory Velocity Profiles
,”
Respiration Physiology
, Vol.
55
, pp.
255
275
.
26.
Menon
A. S.
,
Weber
M. E.
, and
Chang
H. K.
,
1985
, “
Effect of the Larynx on Oscillatory Flow in the Central Airways: A Model Study
,”
Journal of Applied Physiology
, Vol.
59
(
1
), pp.
160
169
.
27.
Mullin
T.
, and
Greated
C. A.
,
1980
, “
Oscillatory Flow in Curved Pipes. Part 1. The Developing-Flow Case
,”
Journal of Fluid Mechanics
, Vol.
98
, Part 2, pp.
383
395
.
28.
Ohmi
M.
,
Iguchi
M.
,
Kakehashi
K.
, and
Masuda
T.
,
1982
, “
Transition to Turbulence and Velocity Distribution in an Oscillating Pipe Flow
,”
Bulletin of the JSME
, Vol.
25
, pp.
365
371
.
29.
Olson
D. E.
,
Sudlow
M. F.
,
Horsfield
K.
, and
Filley
G. F.
,
1973
, “
Convective Patterns of Flow During Inspiration
,”
Archives of Internal Medicine
, Vol.
131
, pp.
51
57
.
30.
Pressman
J. J.
, and
Kelemen
C.
,
1955
, “
Physiology of the Larynx
,”
Physiol Rev.
, Vol.
35
, pp.
506
554
.
31.
Proctor, D. F., 1964, “Physiology of the Upper Airway,” Handbook of Physiology, American Physiological Society, Washington, DC, pp. 309–339.
32.
Schmidt
E.
, and
Wenner
K.
,
1941
, “
Wa¨rmeabgabe u¨ber den Umfang eines angeblasenen geheizten Zylinders
,
Forschg. Ing.-Wes.
, Vol.
12
, pp.
65
73
.
33.
Sergeev
S. I.
,
1966
, “
Fluid Oscillations in Pipes at Moderate Reynolds Numbers
,”
Fluid Dynamics
, Vol.
1
, No.
1
, pp.
168
170
.
34.
Shook, M., Stock, D. E., and Bowen, A. J., 1990, “Split-Film Anemometry,” The Heuristics of Thermal Anemometry, ASME, New York, Vol. 97, pp. 93–98.
35.
Simone
A. F.
, and
Ultman
J. S.
,
1982
, “
Longitudinal Mixing by the Human Larynx
,”
Respiration Physiology
, Vol.
49
, pp.
187
203
.
36.
Stanescu
D. C.
,
Pattijn
J.
,
Clement
J.
, and
Woestijne
K. P. V. D.
,
1972
, “
Glottis Opening and Airway Resistance
,”
Journal of Applied Physiology
, Vol.
32
(
4
), pp.
460
466
.
37.
Torii, K., 1979, “Flow Visualization by Smoke-Wire Technique,” Flow Visualization, Hemisphere Publishing Corporation, Washington, DC, pp. 251–256.
38.
Wills, J. A. B., 1980, “Hot-Wire and Hot-Film Anemometry,” NM1R82, National Maritime Institute, Middlesex, England.
This content is only available via PDF.
You do not currently have access to this content.