A new mixture theory was developed to model the mechano-electrochemical behaviors of charged-hydrated soft tissues containing multi-electrolytes. The mixture is composed of n + 2 constituents (1 charged solid phase, 1 noncharged solvent phase, and n ion species). Results from this theory show that three types of force are involved in the transport of ions and solvent through such materials: (1) a mechanochemical force (including hydraulic and osmotic pressures); (2) an electrochemical force; and (3) an electrical force. Our results also show that three types of material coefficients are required to characterize the transport rates of these ions and solvent: (1) a hydraulic permeability; (2) mechano-electrochemical coupling coefficients; and (3) an ionic conductance matrix. Specifically, we derived the fundamental governing relationships between these forces and material coefficients to describe such mechano-electrochemical transduction effects as streaming potential, streaming current, diffusion (membrane) potential, electro-osmosis, and anomalous (negative) osmosis. As an example, we showed that the well-known formula for the resting cell membrane potential (Hodgkin and Huxley, 1952a, b) could be derived using our new n + 2 mixture model (a generalized triphasic theory). In general, the n + 2 mixture theory is consistent with and subsumes all previous theories pertaining to specific aspects of charged-hydrated tissues. In addition, our results provided the stress, strain, and fluid velocity fields within a tissue of finite thickness during a one-dimensional steady diffusion process. Numerical results were provided for the exchange of Na+ and Ca++ through the tissue. These numerical results support our hypothesis that tissue fixed charge density (cF) plays a significant role in modulating kinetics of ions and solvent transport through charged-hydrated soft tissues.

1.
Akizuki
S.
,
Mow
V. C.
,
Muller
F.
,
Pita
J. C.
,
Howell
D. S.
, and
Manicourt
D. H.
,
1986
, “
The Tensile Properties of Human Knee Joint Cartilage. I: Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus
,”
J. Orthop. Res.
, Vol.
4
, pp.
379
392
.
2.
Bowen
R. M.
,
1980
, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Engng. Sci.
, Vol.
18
, pp.
1129
1148
.
3.
Comper, W. D., 1996, Structure and Function of the Extracellular Matrix of Connective Tissues, Vol. I. Harwood Academic Publishers.
4.
Donnan
F. G.
,
1924
, “
The Theory of Membrane Equilibria
,”
Chemical Review
, Vol.
1
, pp.
73
90
.
5.
de Boer
R.
,
1996
, “
Highlights in the historical development of the porous media theory: Toward a consistent macroscopic theory
,”
Appl. Mech. Rev.
, Vol.
49
, pp.
201
262
.
6.
de Groot, S. R., and Mazur, P., 1984, Non-equilibrium thermodynamics, Dover Publications, Inc., New York.
7.
Eisenberg
S. R.
, and
Grodzinsky
A. J.
,
1985
, “
Swelling of Articular Cartilage and Other Connective Tissues: Electromechanochemical Forces
,”
J. Orthop. Res.
, Vol.
3
, pp.
148
159
.
8.
Fair
J. C.
, and
Osterle
J. F.
,
1971
, “
Reverse Electrodialysis in Charged Capillary Membranes
,”
J. Chem. Phys.
, Vol.
54
, pp.
3307
3316
.
9.
Frank
E. H.
, and
Grodzinsky
A. J.
,
1987
, “
Cartilage Electromechanics—I. Electrokinetic Transduction and the Effects of Electrolyte pH and Ionic Strength
,”
J. Biomechanics
, Vol.
20
, pp.
615
627
.
10.
Frank, E. H., Grodzinsky, A. J., Phillips, S. L., and Grimshaw, P. E., 1990, “Physicochemical and Bioelectrical Determinants of Cartilage Material Properties,” Biomechanics of Diarthrodial Joints, V. C. Mow, A. Ratcliffe, and S. L.-Y. Woo, eds., Spring-Verlag, New York, Vol. 1, pp. 363–390.
11.
Fung, Y. C., 1990. Biomechanics: Motion, Flow, Stress, and Growth, Springer-Verlag, New York.
12.
Gu
W. Y.
,
Lai
W. M.
, and
Mow
V. C.
,
1993
a, “
Transport of Fluid and Ions Through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomechanics
, Vol.
26
, pp.
709
723
.
13.
Gu, W. Y., Lai, W. M., Mow, V. C., 1993b, “Theoretical Basis for Measurements of Cartilage Fixed-Charge Density Using Streaming Current and Electroosmosis Effects,” Advances in Bioengineering, J. M. Tarbell, ed., ASME BED-Vol. 26, pp. 55–58.
14.
Gu, W., 1994, “A Study of Mechano-electrokinetic Properties of Charged-Hydrated-Soft Tissues and Biomechanics of Articular Cartilage,” PhD thesis, Columbia University.
15.
Gu
W.
,
Lai
W. M.
, and
Mow
V. C.
,
1995
, “
Effects of Mechanical Stress and Deformation on Passive Ion Transport Through Hydrated Permeable Tissues
,”
Annuals of Biomedical Engineering
, Vol.
23/S.1
, p.
S–104
S–104
.
16.
Gu
W. Y.
,
Lai
W. M.
, and
Mow
V. C.
,
1997
, “
A Triphasic Analysis of Negative Osmotic Flow Through Charged-Hydrated Soft Tissues
,”
J. Biomechanics
, Vol.
30
, pp.
71
78
.
17.
Guharay
F.
, and
Sachs
F.
,
1984
, “
Stretch-Activated Single Ion Channel Currents in Tissue-Cultured Embryonic Chick Skeletal Muscle
,”
J. Physiol.
, Vol.
352
, pp.
685
701
.
18.
Helfferich, F., 1962, Ion Exchange, McGraw-Hill, New York.
19.
Hille, B., 1992, Ionic Channels of Excitable Membranes, 2nd ed., Sinauer Associates, Inc., Sunderland, MA.
20.
Hodgkin
A. L.
, and
Huxley
A. F.
,
1952
a, “
The Components of Membrane Conductance in the Giant Axon of Loligo
,”
J. Physiol. (London)
, Vol.
116
, pp.
473
496
.
21.
Hodgkin
A. L.
, and
Huxley
A. F.
,
1952
b, “
A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve
,”
J. Physiol. (London)
, Vol.
117
, pp.
500
544
.
22.
Katchalsky, A., and Curran, P. F., 1975, Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, MA, 4th printing.
23.
Kedem
O.
, and
Katchalsky
A.
,
1961
, “
A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability
,”
J. Gen. Physiol
, Vol.
45
, pp.
143
179
.
24.
Lai
W. M.
, and
Mow
V. C.
,
1980
, “
Drag-induced Compaction of Articular Cartilage During a Permeation Experiment
,”
Biorheology
, Vol.
17
, pp.
111
123
.
25.
Lai
W. M.
,
Hou
J. S.
, and
Mow
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
, pp.
245
258
.
26.
Lai
W. M.
,
Gu
W.
, and
Mow
V. C.
,
1994
, “
Flows of Electrolytes Through Charged Hydrated Biologic Tissue
,”
Appl Mech Rev.
, Vol.
47
(part 2), pp.
277
281
.
27.
Lansman
J. B.
,
Hallam
T. J.
, and
Rink
T. J.
,
1987
, “
Single Stretch-Activated Ion Channels in Vascular Endothelial Cell as Mechanotransducers?
,”
Nature
, Vol.
325
, pp.
811
813
.
28.
Linn
F. C.
, and
Sokoloff
L.
,
1965
, “
Movement and Composition of Interstitial Fluid of Cartilage
,”
Arthritis Rheum.
, Vol.
8
, pp.
481
494
.
29.
Maroudas
A.
,
1968
, “
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
,”
Biophys. J.
, Vol.
8
, pp.
575
595
.
30.
Maroudas, A., 1979, “Physicochemical Properties of Articular Cartilage,” Adult Articular Cartilage, 2nd ed., M. A. R. Freeman, ed., Pitman Medical, Kent, U. K., pp. 215–290.
31.
Mow
V. C.
,
Kuei
S. C.
,
Lai
W. M.
, and
Armstrong
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
102
, pp.
73
84
.
32.
Mow
V. C.
,
Ratcliffe
A.
, and
Poole
A. R.
,
1992
, “
Cartilage and Diarthrodial Joints as Paradigms for Hierarchical Materials and Structure
,”
Biomaterials
, Vol.
13
, pp.
67
97
.
33.
Myers
E. R.
,
Lai
W. M.
, and
Mow
V. C.
,
1984
, “
A Continuum Theory and an Experiment for the Ion-Induced Swelling Behavior of Articular Cartilage
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
106
, pp.
151
158
.
34.
Nernst
W.
,
1888
, “
Zur Kinetik der Lo¨sung befindlichen Ko¨rper: Theorie der Diffusion
,”
Z Phys. Chem.
, Vol.
3
, pp.
613
637
.
35.
Onsager
L.
,
1931
a, “
Reciprocal Relations in Irreversible Processes. I.
,”
Phys. Rev.
, Vol.
37
, pp.
405
426
.
36.
Onsager
L.
,
1931
b, “
Reciprocal Relations in Irreversible Processes. II.
,”
Phys. Rev.
, Vol.
38
, pp.
2265
2279
.
37.
Owens
J. M.
,
Lai
W. M.
, and
Mow
V. C.
,
1991
, “
Biomechanical Effects Due to Na+–Ca++ Exchange in Articular Cartilage
,”
Trans. Orthop. Res. Soc
, Vol.
16
, p.
360
360
.
38.
Planck
M.
,
1890
a, “
Ueber die Erregung von Elektricita¨t und Wa¨rme in Elektrolyten
,”
Ann. Phys. Chem., Neue Folge
, Vol.
39
, pp.
161
186
.
39.
Planck
M.
,
1890
b, “
Ueber die Potentialdiferenz zwischen zwie verdu¨nnten Lo¨sungen bina¨rer Elektrolyte
,”
Ann. Phys., Chem., Neue Folge
, Vol.
40
, pp.
561
576
.
40.
Salzstein
R. A.
,
Pollack
S. R.
, and
Mak
A. F. T.
,
1987
, “
Electromechanical Potentials in Cortical Bone—I. A Continuum Approach
,”
J. Biomechanics
, Vol.
20
, pp.
261
270
.
41.
Silberberg
A.
,
1982
, “
The Mechanics and Thermodynamics of Separation Flow Through Porous, Molecularly Disperse, Solid Media
,”
Bioreology
, Vol.
19
, pp.
111
127
.
42.
Teorell
T.
,
1953
, “
Transport Processes and Electrical Phenomena in Ionic Membranes
,”
Progress in Biophysics and Physicochemistry
, Vol.
3
, pp.
305
369
.
43.
Tohyama
H.
,
Gu
W.
,
Setton
L. A.
,
Lai
W. M.
, and
Mow
V. C.
,
1995
, “
Ion-Induced Swelling Behaviors of Articular Cartilage in Tension
,”
Trans. Orthop. Res. Soc
, Vol.
20
, p.
515
515
.
This content is only available via PDF.
You do not currently have access to this content.